120 research outputs found

    Photorespiratory 2-phosphoglycolate metabolism and photoreduction of O2 cooperate in high-light acclimation of Synechocystis sp. strain PCC 6803

    Get PDF
    In cyanobacteria, photorespiratory 2-phosphoglycolate (2PG) metabolism is mediated by three different routes, including one route involving the glycine decarboxylase complex (Gcv). It has been suggested that, in addition to conversion of 2PG into non-toxic intermediates, this pathway is important for acclimation to high-light. The photoreduction of O2 (Mehler reaction), which is mediated by two flavoproteins Flv1 and Flv3 in cyanobacteria, dissipates excess reductants under high-light by the four electron-reduction of oxygen to water. Single and double mutants defective in these processes were constructed to investigate the relation between photorespiratory 2PG-metabolism and the photoreduction of O2 in the cyanobacterium Synechocystis sp. PCC 6803. The single mutants Δflv1, Δflv3, and ΔgcvT, as well as the double mutant Δflv1/ΔgcvT, were completely segregated but not the double mutant Δflv3/ΔgcvT, suggesting that the T-protein subunit of the Gcv (GcvT) and Flv3 proteins cooperate in an essential process. This assumption is supported by the following results: (1) The mutant Δflv3/ΔgcvT showed a considerable longer lag phase and sometimes bleached after shifts from slow (low light, air CO2) to rapid (standard light, 5% CO2) growing conditions. (2) Photoinhibition experiments indicated a decreased ability of the mutant Δflv3/ΔgcvT to cope with high-light. (3) Fluorescence measurements showed that the photosynthetic electron chain is reduced in this mutant. Our data suggest that the photorespiratory 2PG-metabolism and the photoreduction of O2, particularly that catalyzed by Flv3, cooperate during acclimation to high-light stress in cyanobacteria

    Rapid Environmental Change over the Past Decade Revealed by Isotopic Analysis of the California Mussel in the Northeast Pacific

    Get PDF
    The anthropogenic input of fossil fuel carbon into the atmosphere results in increased carbon dioxide (CO2) into the oceans, a process that lowers seawater pH, decreases alkalinity and can inhibit the production of shell material. Corrosive water has recently been documented in the northeast Pacific, along with a rapid decline in seawater pH over the past decade. A lack of instrumentation prior to the 1990s means that we have no indication whether these carbon cycle changes have precedence or are a response to recent anthropogenic CO2 inputs. We analyzed stable carbon and oxygen isotopes (δ13C, δ18O) of decade-old California mussel shells (Mytilus californianus) in the context of an instrumental seawater record of the same length. We further compared modern shells to shells from 1000 to 1340 years BP and from the 1960s to the present and show declines in the δ13C of modern shells that have no historical precedent. Our finding of decline in another shelled mollusk (limpet) and our extensive environmental data show that these δ13C declines are unexplained by changes to the coastal food web, upwelling regime, or local circulation. Our observed decline in shell δ13C parallels other signs of rapid changes to the nearshore carbon cycle in the Pacific, including a decline in pH that is an order of magnitude greater than predicted by an equilibrium response to rising atmospheric CO2, the presence of low pH water throughout the region, and a record of a similarly steep decline in δ13C in algae in the Gulf of Alaska. These unprecedented changes and the lack of a clear causal variable underscores the need for better quantifying carbon dynamics in nearshore environments

    Hospitalizations for acetaminophen overdose: a Canadian population-based study from 1995 to 2004

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acetaminophen overdose (AO) is the most common cause of acute liver failure. We examined temporal trends and sociodemographic risk factors for AO in a large Canadian health region.</p> <p>Methods</p> <p>1,543 patients hospitalized for AO in the Calgary Health Region (population ~1.1 million) between 1995 and 2004 were identified using administrative data.</p> <p>Results</p> <p>The age/sex-adjusted hospitalization rate decreased by 41% from 19.6 per 100,000 population in 1995 to 12.1 per 100,000 in 2004 (<it>P </it>< 0.0005). This decline was greater in females than males (46% vs. 29%). Whereas rates fell 46% in individuals under 50 years, a 50% increase was seen in those ≥ 50 years. Hospitalization rates for intentional overdoses fell from 16.6 per 100,000 in 1995 to 8.6 per 100,000 in 2004 (2004 vs. 1995: rate ratio [RR] 0.49; <it>P </it>< 0.0005). Accidental overdoses decreased between 1995 and 2002, but increased to above baseline levels by 2004 (2004 vs. 1995: RR 1.24;<it>P </it>< 0.0005). Risk factors for AO included female sex (RR 2.19; <it>P </it>< 0.0005), Aboriginal status (RR 4.04; <it>P </it>< 0.0005), and receipt of social assistance (RR 5.15; <it>P </it>< 0.0005).</p> <p>Conclusion</p> <p>Hospitalization rates for AO, particularly intentional ingestions, have fallen in our Canadian health region between 1995 and 2004. Young patients, especially females, Aboriginals, and recipients of social assistance, are at highest risk.</p

    Epigenetic regulation of caloric restriction in aging

    Get PDF
    The molecular mechanisms of aging are the subject of much research and have facilitated potential interventions to delay aging and aging-related degenerative diseases in humans. The aging process is frequently affected by environmental factors, and caloric restriction is by far the most effective and established environmental manipulation for extending lifespan in various animal models. However, the precise mechanisms by which caloric restriction affects lifespan are still not clear. Epigenetic mechanisms have recently been recognized as major contributors to nutrition-related longevity and aging control. Two primary epigenetic codes, DNA methylation and histone modification, are believed to dynamically influence chromatin structure, resulting in expression changes of relevant genes. In this review, we assess the current advances in epigenetic regulation in response to caloric restriction and how this affects cellular senescence, aging and potential extension of a healthy lifespan in humans. Enhanced understanding of the important role of epigenetics in the control of the aging process through caloric restriction may lead to clinical advances in the prevention and therapy of human aging-associated diseases

    Right drug, right patient, right time: aspiration or future promise for biologics in rheumatoid arthritis?

    Get PDF
    Individualising biologic disease-modifying anti-rheumatic drugs (bDMARDs) to maximise outcomes and deliver safe and cost-effective care is a key goal in the management of rheumatoid arthritis (RA). Investigation to identify predictive tools of bDMARD response is a highly active and prolific area of research. In addition to clinical phenotyping, cellular and molecular characterisation of synovial tissue and blood in patients with RA, using different technologies, can facilitate predictive testing. This narrative review will summarise the literature for the available bDMARD classes and focus on where progress has been made. We will also look ahead and consider the increasing use of ‘omics’ technologies, the potential they hold as well as the challenges, and what is needed in the future to fully realise our ambition of personalised bDMARD treatment

    Developmental Profiles of Eczema, Wheeze, and Rhinitis: Two Population-Based Birth Cohort Studies

    Get PDF
    The term "atopic march" has been used to imply a natural progression of a cascade of symptoms from eczema to asthma and rhinitis through childhood. We hypothesize that this expression does not adequately describe the natural history of eczema, wheeze, and rhinitis during childhood. We propose that this paradigm arose from cross-sectional analyses of longitudinal studies, and may reflect a population pattern that may not predominate at the individual level.Data from 9,801 children in two population-based birth cohorts were used to determine individual profiles of eczema, wheeze, and rhinitis and whether the manifestations of these symptoms followed an atopic march pattern. Children were assessed at ages 1, 3, 5, 8, and 11 y. We used Bayesian machine learning methods to identify distinct latent classes based on individual profiles of eczema, wheeze, and rhinitis. This approach allowed us to identify groups of children with similar patterns of eczema, wheeze, and rhinitis over time. Using a latent disease profile model, the data were best described by eight latent classes: no disease (51.3%), atopic march (3.1%), persistent eczema and wheeze (2.7%), persistent eczema with later-onset rhinitis (4.7%), persistent wheeze with later-onset rhinitis (5.7%), transient wheeze (7.7%), eczema only (15.3%), and rhinitis only (9.6%). When latent variable modelling was carried out separately for the two cohorts, similar results were obtained. Highly concordant patterns of sensitisation were associated with different profiles of eczema, rhinitis, and wheeze. The main limitation of this study was the difference in wording of the questions used to ascertain the presence of eczema, wheeze, and rhinitis in the two cohorts.The developmental profiles of eczema, wheeze, and rhinitis are heterogeneous; only a small proportion of children (∼ 7% of those with symptoms) follow trajectory profiles resembling the atopic march. Please see later in the article for the Editors' Summary

    De novo formed satellite DNA-based mammalian artificial chromosomes and their possible applications

    Full text link
    • …
    corecore