24 research outputs found

    A case review to describe variation in care following diagnosis of Perthes' disease

    Get PDF
    Aims Perthes’ disease is a condition which leads to necrosis of the femoral head. It is most commonly reported in children aged four to nine years, with recent statistics suggesting it affects around five per 100,000 children in the UK. Current treatment for the condition aims to maintain the best possible environment for the disease process to run its natural course. Management typically includes physiotherapy with or without surgical intervention. Physiotherapy intervention often will include strengthening/stretching programmes, exercise/activity advice, and, in some centres, will include intervention, such as hydrotherapy. There is significant variation in care with no consensus on which treatment option is best. The importance of work in this area has been demonstrated by the British Society for Children’s Orthopaedic Surgery through the James Lind Alliance’s prioritization of work to determine/identify surgical versus non-surgical management of Perthes’ disease. It was identified as the fourth-highest priority for paediatric lower limb surgery research in 2018. Methods Five UK NHS centres, including those from the NEWS (North, East, West and South Yorkshire) orthopaedic group, contributed to this case review, with each entre providing clinical data from a minimum of five children. Information regarding both orthopaedic and physiotherapeutic management over a two-year post-diagnosis period was reviewed. Results Data were extracted from the clinical records of 32 children diagnosed with Perthes’ disease; seven boys and 25 girls. The mean age of the children at diagnosis was 6.16 years (standard deviation (SD) 3.001). In all, 26 children were referred for physiotherapy. In the two-year period following diagnosis, children were seen a median of 7.5 times (interquartile range (IQR) 4.25 to 11) by an orthopaedic surgeon, and a median of 9.5 times (IQR 8 to 18.25) by a physiotherapist. One centre had operated on all of their children, while another had operated on none. Overall, 17 (53%) of the children were managed conservatively in the two-year follow-up period, and 15 (47%) of the children underwent surgery in the two-year follow-up period. Conclusion The results of this case review demonstrate a variation of care provided to children in the UK with Perthes’ disease. Further national and international understanding of current care is required to underpin the rationale for different treatment options in children with Perthes’ disease

    Intravascular Ultrasound (IVUS): A Potential Arthroscopic Tool for Quantitative Assessment of Articular Cartilage

    Get PDF
    Conventional ultrasound examination of the articular cartilage performed externally on the body surface around the joint has limited accuracy due to the inadequacy in frequency used. In contrast to this, minimally invasive arthroscopy-based ultrasound with adequately high frequency may be a better alternative to assess the cartilage. Up to date, no special ultrasound transducer for imaging the cartilage in arthroscopic use has been designed. In this study, we introduced the intravascular ultrasound (IVUS) for this purpose. An IVUS system with a catheter-based probe (Ø ≈ 1mm) was used to measure the thickness and surface acoustical reflection of the bovine patellar articular cartilage in vitro before and after degeneration induced by enzyme treatments. Similar measurement was performed using another high frequency ultrasound system (Vevo) with a probe of much larger size and the results were compared between the two systems. The thickness measured using IVUS was highly correlated (r = 0.985, p < 0.001) with that obtained by Vevo. Thickness and surface reflection amplitude measured using IVUS on the enzymatically digested articular cartilage showed changes similar to those obtained by Vevo, which were expectedly consistent with previous investigations. IVUS can be potentially used for the quantitative assessment of articular cartilage, with its ready-to-use arthroscopic feature

    New insights into the biomechanics of Legg-CalvĂ©-Perthes’ disease

    No full text

    Variation in mammalian proximal femoral development: comparative analysis of two distinct ossification patterns

    No full text
    The developmental anatomy of the proximal femur is complex. In some mammals, including humans, the femoral head and greater trochanter emerge as separate ossification centres within a common chondroepiphysis and remain separate throughout ontogeny. In other species, these secondary centres coalesce within the chondroepiphysis to form a single osseous epiphysis much like the proximal humerus. These differences in femoral ontogeny have not been previously addressed, yet are critical to an understanding of femoral mineralization and architecture across a wide range of mammals and may have key implications for understanding and treating hip abnormalities in humans. We evaluated femora from 70 mammalian species and categorized each according to the presence of a ‘separate’ or ‘coalesced’ proximal epiphysis based on visual assessment. We found that ossification type varies widely among mammals: taxa in the ‘coalesced’ group include marsupials, artiodactyls, perissodactyls, bats, carnivores and several primates, while the ‘separate’ group includes hominoids, many rodents, tree shrews and several marine species. There was no clear relationship to body size, phylogeny or locomotion, but qualitative and quantitative differences between the groups suggest that ossification type may be primarily an artefact of femoral shape and neck length. As some osseous abnormalities of the human hip appear to mimic the normal morphology of species with coalesced epiphyses, these results may provide insight into the aetiology and treatment of human hip disorders such as femoroacetabular impingement and early-onset osteoarthritis
    corecore