640 research outputs found

    Mechanism of Cisplatin-Induced Cytotoxicity Is Correlated to Impaired Metabolism Due to Mitochondrial ROS Generation

    Get PDF
    The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis-and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player.116224Ysciescopu

    Quantum internet using code division multiple access

    Full text link
    A crucial open problem in large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels.Comment: 29 pages, 6 figure

    Sprouty2 mediated tuning of signalling is essential for somite myogenesis

    Get PDF
    Background: Negative regulators of signal transduction cascades play critical roles in controlling different aspects of normal embryonic development. Sprouty2 (Spry2) negatively regulates receptor tyrosine kinases (RTK) and FGF signalling and is important in differentiation, cell migration and proliferation. In vertebrate embryos, Spry2 is expressed in paraxial mesoderm and in forming somites. Expression is maintained in the myotome until late stages of somite differentiation. However, its role and mode of action during somite myogenesis is still unclear. Results: Here, we analysed chick Spry2 expression and showed that it overlaps with that of myogenic regulatory factors MyoD and Mgn. Targeted mis-expression of Spry2 led to inhibition of myogenesis, whilst its C-terminal domain led to an increased number of myogenic cells by stimulating cell proliferation. Conclusions: Spry2 is expressed in somite myotomes and its expression overlaps with myogenic regulatory factors. Overexpression and dominant-negative interference showed that Spry2 plays a crucial role in regulating chick myogenesis by fine tuning of FGF signaling through a negative feedback loop. We also propose that mir-23, mir-27 and mir-128 could be part of the negative feedback loop mechanism. Our analysis is the first to shed some light on in vivo Spry2 function during chick somite myogenesis

    Morphological and Electrochemical Properties of Crystalline Praseodymium Oxide Nanorods

    Get PDF
    Highly crystalline Pr6O11 nanorods were prepared by a simple precipitation method of triethylamine complex at 500°C. Synthesized Pr6O11 nanorods were uniformly grown with the diameter of 12–15 nm and the length of 100–150 nm without any impurities of unstable PrO2 phase. The Pr6O11 nanorod electrodes attained a high electrical conductivity of 0.954 Scm−1 with low activation energy of 0.594 eV at 850°C. The electrochemical impedance study showed that the resistance of electrode was significantly decreased at high temperature, which resulted from its high conductivity and low activation energy. The reduced impedance and high electrical conductivity of Pr6O11 nanorod electrodes are attributed to the reduction of grain boundaries and high space charge width

    Suprasellar cysts: clinical presentation, surgical indications, and optimal surgical treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To describe the clinical presentation of suprasellar cysts (SSCs) and surgical indications, and compare the treatment methods of endoscopic ventriculocystostomy (VC) and ventriculocystocisternotomy (VCC).</p> <p>Methods</p> <p>We retrospectively reviewed the records of 73 consecutive patients with SSC who were treated between June 2002 and September 2009. Twenty-two patients were treated with VC and 51 with VCC. Outcome was assessed by clinical examination and magnetic resonance imaging.</p> <p>Results</p> <p>The patients were divided into five groups based on age at presentation: age less than 1 year (n = 6), 1-5 years (n = 36), 6-10 years (n = 15), 11-20 years (n = 11), and 21-53 years (n = 5). The main clinical presentations were macrocrania (100%), motor deficits (50%), and gaze disturbance (33.3%) in the age less than 1 year group; macrocrania (75%), motor deficits (63.9%), and gaze disturbance (27.8%) in the 1-5 years group; macrocrania (46.7%), symptoms of raised intracranial pressure (ICP) (40.0%), endocrine dysfunction (40%), and seizures (33.3%) in the 6-10 years group; symptoms of raised ICP (54.5%), endocrine dysfunction (54.5%), and reduced visual field or acuity (36.4%) in the 11-20 years group; and symptoms of raised ICP (80.0%) and reduced visual field or acuity (40.0%) in the 21-53 years group. The overall success rate of endoscopic fenestration was 90.4%. A Kaplan-Meier curve for long-term efficacy of the two treatment modalities showed better results for VCC than for VC (p = 0.008).</p> <p>Conclusions</p> <p>Different age groups with SSCs have different main clinical presentations. VCC appears to be more efficacious than VC.</p

    Ndel1 Promotes Axon Regeneration via Intermediate Filaments

    Get PDF
    Failure of axons to regenerate following acute or chronic neuronal injury is attributed to both the inhibitory glial environment and deficient intrinsic ability to re-grow. However, the underlying mechanisms of the latter remain unclear. In this study, we have investigated the role of the mammalian homologue of aspergillus nidulans NudE, Ndel1, emergently viewed as an integrator of the cytoskeleton, in axon regeneration. Ndel1 was synthesized de novo and upregulated in crushed and transected sciatic nerve axons, and, upon injury, was strongly associated with neuronal form of the intermediate filament (IF) Vimentin while dissociating from the mature neuronal IF (Neurofilament) light chain NF-L. Consistent with a role for Ndel1 in the conditioning lesion-induced neurite outgrowth of Dorsal Root Ganglion (DRG) neurons, the long lasting in vivo formation of the neuronal Ndel1/Vimentin complex was associated with robust axon regeneration. Furthermore, local silencing of Ndel1 in transected axons by siRNA severely reduced the extent of regeneration in vivo. Thus, Ndel1 promotes axonal regeneration; activating this endogenous repair mechanism may enhance neuroregeneration during acute and chronic axonal degeneration
    corecore