45 research outputs found

    Advances, challenges and future directions for stem cell therapy in amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative condition where loss of motor neurons within the brain and spinal cord leads to muscle atrophy, weakness, paralysis and ultimately death within 3–5 years from onset of symptoms. The specific molecular mechanisms underlying the disease pathology are not fully understood and neuroprotective treatment options are minimally effective. In recent years, stem cell transplantation as a new therapy for ALS patients has been extensively investigated, becoming an intense and debated field of study. In several preclinical studies using the SOD1G93A mouse model of ALS, stem cells were demonstrated to be neuroprotective, effectively delayed disease onset and extended survival. Despite substantial improvements in stem cell technology and promising results in preclinical studies, several questions still remain unanswered, such as the identification of the most suitable and beneficial cell source, cell dose, route of delivery and therapeutic mechanisms. This review will cover publications in this field and comprehensively discuss advances, challenges and future direction regarding the therapeutic potential of stem cells in ALS, with a focus on mesenchymal stem cells. In summary, given their high proliferation activity, immunomodulation, multi-differentiation potential, and the capacity to secrete neuroprotective factors, adult mesenchymal stem cells represent a promising candidate for clinical translation. However, technical hurdles such as optimal dose, differentiation state, route of administration, and the underlying potential therapeutic mechanisms still need to be assessed

    Analysis of FGGY as a risk factor for sporadic amyotrophic lateral sclerosis.

    No full text
    A genome-wide association study (GWAS) using pooled DNA samples from 386 sporadic ALS patients and 542 controls from the USA, identified genetic variation in FGGY (FLJ10986) as a risk factor, as well as 66 additional candidate SNPs. Considering the large number of hypotheses that are tested in GWAS, independent replication of associations is crucial for identifying true-positive genetic risk factors for disease. The primary aim of this study was to study the association between FGGY and sporadic ALS in large, homogeneous populations from northern Europe. Genotyping experiments were performed using Illumina Beadchips, Sequenom iPLEX assays and Taqman technology on large case-control series from The Netherlands, Belgium, Sweden and Ireland (total: 1883 sporadic ALS patients and 2063 controls). No significant association between sporadic ALS and the six previously reported associated SNPs in FGGY was observed: rs6700125 (p=0.56), rs6690993 (p=0.30), rs10493256 (p=0.68), rs6587852 (p=0.64), rs1470407 (p=0.28) and rs333662 (p=0.44). Screening of the additional candidate loci did not yield significant associations either, with the lowest p-value in joint analysis for rs7772593 (p=0.14). We concluded that common genetic variation in FGGY is not associated with susceptibility to sporadic ALS in genetically homogeneous populations from northern Europe
    corecore