71 research outputs found

    Family history is neglected in the work-up of patients with colorectal cancer: a quality assessment using cancer registry data

    Get PDF
    In the diagnostic work-up of hereditary non-polyposis colorectal cancer (HNPCC, Lynch syndrome), high-risk patients can be identified using information from the family history on cancer (‘Amsterdam criteria’ and ‘Bethesda guidelines’). To investigate to what extent the medical specialists apply these criteria to patients with colorectal carcinoma and a suspicion of HNPCC, we collected information on diagnostic work-up of 224 patients of seven hospitals in the region of the Comprehensive Cancer Centre West in Leiden, The Netherlands. These patients were diagnosed with colorectal cancer between 1999 and 2001 and satisfied at least one of the Bethesda guidelines. A complete family history was recorded for 38 of the 244 patients (16%). Patients with a complete family history were more likely to be referred to the Clinical Genetic Centre than those with an incomplete or absent family history (53% vs. 13% and 4%, respectively; P < 0.0001), and more likely to be analyzed for microsatellite instability (MSI), which is a characteristic of HNPCC (34% vs. 6% and 1%, respectively; P < 0.0001). We conclude that the family history is neglected in the majority of patients with colorectal cancer and MSI-analysis is only performed in a small proportion of the patients that meet the guidelines for this analysis

    QTL mapping in autotetraploids using SNP dosage information

    Get PDF
    Dense linkage maps derived by analysing SNP dosage in autotetraploids provide detailed information about the location of, and genetic model at, quantitative trait loci. Recent developments in sequencing and genotyping technologies enable researchers to generate high-density single nucleotide polymorphism (SNP) genotype data for mapping studies. For polyploid species, the SNP genotypes are informative about allele dosage, and Hackett et al. (PLoS ONE 8:e63939, 2013) presented theory about how dosage information can be used in linkage map construction and quantitative trait locus (QTL) mapping for an F1 population in an autotetraploid species. Here, QTL mapping using dosage information is explored for simulated phenotypic traits of moderate heritability and possibly non-additive effects. Different mapping strategies are compared, looking at additive and more complicated models, and model fitting as a single step or by iteratively re-weighted modelling. We recommend fitting an additive model without iterative re-weighting, and then exploring non-additive models for the genotype means estimated at the most likely position. We apply this strategy to re-analyse traits of high heritability from a potato population of 190 F1 individuals: flower colour, maturity, height and resistance to late blight (Phytophthora infestans (Mont.) de Bary) and potato cyst nematode (Globodera pallida), using a map of 3839 SNPs. The approximate confidence intervals for QTL locations have been improved by the detailed linkage map, and more information about the genetic model at each QTL has been revealed. For several of the reported QTLs, candidate SNPs can be identified, and used to propose candidate trait genes. We conclude that the high marker density is informative about the genetic model at loci of large effects, but that larger populations are needed to detect smaller QTLs

    Detection and Verification of Mammalian Mirtrons by Northern Blotting

    Get PDF
    microRNAs (miRNAs) have vital roles in regulating gene expression—contributing to major diseases like cancer and heart disease. Over the last decade, thousands of miRNAs have been discovered through high throughput sequencing-based annotation. Different classes have been described, as well as a great dynamic range of expression levels. While sequencing approaches provide insight into biogenesis and allow confident identification, there is a need for additional methods for validation and characterization. Northern blotting was one of the first techniques used for studying miRNAs, and remains one of the most valuable as it avoids enzymatic manipulation of miRNA transcripts. Blotting can also provide insight into biogenesis by revealing RNA processing intermediates. Compared to sequencing, however, northern blotting is a relatively insensitive technology. This creates a challenge for detecting low expressed miRNAs, particularly those produced by inefficient, non-canonical pathways. In this chapter, we describe a strategy to study such miRNAs by northern blotting that involves ectopic expression of both miRNAs and miRNA-binding Argonaute (Ago) proteins. Through use of epitope tags, this strategy also provides a convenient method for verification of small RNA competency to be loaded into regulatory complexes

    Brain ultrasonography findings in neonates with exposure to cocaine during pregnancy

    Get PDF
    Background: Cocaine exposure during pregnancy has been reported to have detrimental effects on the fetus. Objective: To describe the findings on cranial ultrasonography (CUS) as part of a neonatal screening programme for exposed neonates. Materials and methods: The study was a semiprospective analysis of a 12-year cohort of neonates born to mothers who had used cocaine during their pregnancy and who had follow-up according to a strict clinical protocol. Results: In total, 154 neonates (78 boys, 76 girls) were included, of whom 29 (19%) were born preterm, and 125 (81%) were born full-term. Abnormalities on CUS were seen in 37 neonates (24%; 95% CI 18-31%). The abnormalities were classified as minor in 20 (13%; 95% CI 9-19%) and mildly abnormal in 17 (11%; 95% CI 7-17%). None of the infants showed severe abnormalities. The abnormalities were not associated with the duration or maximum amount of cocaine use during pregnancy. Conclusion: None of the infants had severe abnormalities. Detected abnormalities were not correlated with the duration or maximum amount of cocaine use. Given these findings, we feel that routine cranial ultrasonography in this population is not warranted

    Insight on genes affecting tuber development in potato upon <i>Potato spindle tuber viroid</i> (PSTVd) infection

    Get PDF
    Potato (Solanum tuberosum L) is a natural host of Potato spindle tuber viroid (PSTVd) which can cause characteristic symptoms on developing plants including stunting phenotype and distortion of leaves and tubers. PSTVd is the type species of the family Pospiviroidae, and can replicate in the nucleus and move systemically throughout the plant. It is not well understood how the viroid can affect host genes for successful invasion and which genes show altered expression levels upon infection. Our primary focus in this study is the identification of genes which can affect tuber formation since viroid infection can strongly influence tuber development and especially tuber shape. In this study, we used a large-scale method to identify differentially expressed genes in potato. We have identified defence, stress and sugar metabolism related genes having altered expression levels upon infection. Additionally, hormone pathway related genes showed significant up- or down-regulation. DWARF1/DIMINUTO, Gibberellin 7-oxidase and BEL5 transcripts were identified and validated showing differential expression in viroid infected tissues. Our study suggests that gibberellin and brassinosteroid pathways have a possible role in tuber development upon PSTVd infection

    Altered miRNA expression network in locus coeruleus of depressed suicide subjects

    Get PDF
    Norepinephrine (NE) is produced primarily by neurons in the locus coeruleus (LC). Retrograde and ultrastructural examinations reveal that the core of the LC and its surrounding region receives afferent projections from several brain areas which provide multiple neurochemical inputs to the LC with changes in LC neuronal firing, making it a highly coordinated event. Although NE and mediated signaling systems have been studied in relation to suicide and psychiatric disorders that increase the risk of suicide including depression, less is known about the corresponding changes in molecular network within LC. In this study, we examined miRNA networks in the LC of depressed suicide completers and healthy controls. Expression array revealed differential regulation of 13 miRNAs. Interaction between altered miRNAs and target genes showed dense interconnected molecular network. Functional clustering of predicated target genes yielded stress induced disorders that collectively showed the complex nature of suicidal behavior. In addition, 25 miRNAs were pairwise correlated specifically in the depressed suicide group, but not in the control group. Altogether, our study revealed for the first time the involvement of LC based dysregulated miRNA network in disrupting cellular pathways associated with suicidal behavior

    High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients

    Get PDF
    Approximately 25% of all patients with stage II colorectal cancer will experience recurrent disease and subsequently die within 5 years. MicroRNA-21 (miR-21) is upregulated in several cancer types and has been associated with survival in colon cancer. In the present study we developed a robust in situ hybridization assay using high-affinity Locked Nucleic Acid (LNA) probes that specifically detect miR-21 in formalin-fixed paraffin embedded (FFPE) tissue samples. The expression of miR-21 was analyzed by in situ hybridization on 130 stage II colon and 67 stage II rectal cancer specimens. The miR-21 signal was revealed as a blue chromogenic reaction, predominantly observed in fibroblast-like cells located in the stromal compartment of the tumors. The expression levels were measured using image analysis. The miR-21 signal was determined as the total blue area (TB), or the area fraction relative to the nuclear density (TBR) obtained using a red nuclear stain. High TBR (and TB) estimates of miR-21 expression correlated significantly with shorter disease-free survival (p = 0.004, HR = 1.28, 95% CI: 1.06–1.55) in the stage II colon cancer patient group, whereas no significant correlation with disease-free survival was observed in the stage II rectal cancer group. In multivariate analysis both TB and TBR estimates were independent of other clinical parameters (age, gender, total leukocyte count, K-RAS mutational status and MSI). We conclude that miR-21 is primarily a stromal microRNA, which when measured by image analysis identifies a subgroup of stage II colon cancer patients with short disease-free survival

    Assignment of genetic linkage maps to diploid Solanum tuberosum pachytene chromosomes by BAC-FISH technology

    Get PDF
    A cytogenetic map has been developed for diploid potato (Solanum tuberosum), in which the arms of the 12 potato bivalents can be identified in pachytene complements using multicolor fluorescence in situ hybridization (FISH) with a set of 60 genetically anchored bacterial artificial chromosome (BAC) clones from the RHPOTKEY BAC library. This diagnostic set of selected BACs (five per chromosome) hybridizes to euchromatic regions and corresponds to well-defined loci in the ultradense genetic map, and with these probes a new detailed and reliable pachytene karyotype could be established. Chromosome size has been estimated both from microscopic length measurements and from 4′,6-diamidino-2-phenylindole fluorescence-based DNA content measurements. In both approaches, chromosome 1 is the largest (100–115 Mb) and chromosome 11 the smallest (49–53 Mb). Detailed measurements of mega-base-pair to micrometer ratios have been obtained for chromosome 5, with average values of 1.07 Mb/μm for euchromatin and 3.67 Mb/μm for heterochromatin. In addition, our FISH results helped to solve two discrepancies in the potato genetic map related to chromosomes 8 and 12. Finally, we discuss the significance of the potato cytogenetic map for extended FISH studies in potato and related Solanaceae, which will be especially beneficial for the potato genome-sequencing project

    Maternal TLR4 and NOD2 Gene Variants, Pro-Inflammatory Phenotype and Susceptibility to Early-Onset Preeclampsia and HELLP Syndrome

    Get PDF
    Background: Altered maternal inflammatory responses play a role in the development of preeclampsia and the hemolysis, elevated liver enzymes and low platelets (HELLP) syndrome. We examined whether allelic variants of the innate immune receptors toli-like receptor 4 (TLR4) and nucleotide-binding oligomerization domain (NOD2), that impair the inflammatory response to endotexin are related to preeclampsia and HELLP syndrome. Methods and Finding: We determined five common mutations in TLR4 (D299G and T399I and NOD2 (R70W, G908R and L1007fs) in 340 primiparous women with a histo

    Additive QTLs on three chromosomes control flowering time in woodland strawberry (Fragaria vesca L.)

    Get PDF
    Flowering time is an important trait that affects survival, reproduction and yield in both wild and cultivated plants. Therefore, many studies have focused on the identification of flowering time quantitative trait locus (QTLs) in different crops, and molecular control of this trait has been extensively investigated in model species. Here we report the mapping of QTLs for flowering time and vegetative traits in a large woodland strawberry mapping population that was phenotyped both under field conditions and in a greenhouse after flower induction in the field. The greenhouse experiment revealed additive QTLs in three linkage groups (LG), two on both LG4 and LG7, and one on LG6 that explain about half of the flowering time variance in the population. Three of the QTLs were newly identified in this study, and one co-localized with the previously characterized FvTFL1 gene. An additional strong QTL corresponding to previously mapped PFRU was detected in both field and greenhouse experiments indicating that gene(s) in this locus can control the timing of flowering in different environments in addition to the duration of flowering and axillary bud differentiation to runners and branch crowns. Several putative flowering time genes were identified in these QTL regions that await functional validation. Our results indicate that a few major QTLs may control flowering time and axillary bud differentiation in strawberries. We suggest that the identification of causal genes in the diploid strawberry may enable fine tuning of flowering time and vegetative growth in the closely related octoploid cultivated strawberry.Peer reviewe
    corecore