96 research outputs found
Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia.
The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease
Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics
Open Source PaperThis work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published version of the article
Peptide Ligands Incorporated into the Threefold Spike Capsid Domain to Re-Direct Gene Transduction of AAV8 and AAV9 In Vivo
Efficiency and specificity of viral vectors are vital issues in gene therapy. Insertion of peptide ligands into the adeno-associated viral (AAV) capsid at receptor binding sites can re-target AAV2-derived vectors to alternative cell types. Also, the use of serotypes AAV8 and -9 is more efficient than AAV2 for gene transfer to certain tissues in vivo. Consequently, re-targeting of these serotypes by ligand insertion could be a promising approach but has not been explored so far. Here, we generated AAV8 and -9 vectors displaying peptides in the threefold spike capsid domain. These peptides had been selected from peptide libraries displayed on capsids of AAV serotype 2 to optimize systemic gene delivery to murine lung tissue and to breast cancer tissue in PymT transgenic mice (PymT). Such peptide insertions at position 590 of the AAV8 capsid and position 589 of the AAV9 capsid changed the transduction properties of both serotypes. However, both peptides inserted in AAV8 did not result in the same changes of tissue tropism as they did in AAV2. While the AAV2 peptides selected on murine lung tissue did not alter tropism of serotypes 8 and -9, insertion of the AAV2-derived peptide selected on breast cancer tissue augmented tumor gene delivery in both serotypes. Further, this peptide mediated a strong but unspecific in vivo gene transfer for AAV8 and abrogated transduction of various control tissues for AAV9. Our findings indicate that peptide insertion into defined sites of AAV8 and -9 capsids can change and improve their efficiency and specificity compared to their wild type variants and to AAV2, making these insertion sites attractive for the generation of novel targeted vectors in these serotypes
Acquired Properties Comparison of Solid Nitriding, Gas Nitriding and Plasma Nitriding in Tool Steels
Molecular characterisation and clinical outcome of B-cell precursor acute lymphoblastic leukaemia with IG-MYC rearrangement
Rarely, immunophenotypically immature B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) carries an immunoglobulin-MYC rearrangement (IG-MYC-r). This can result in diagnostic confusion with Burkitt lymphoma/leukaemia and use of unproven individualised treatment schedules. Here we contrast the molecular characteristics of these conditions and investigate historic clinical outcome data. We identified 90 cases registered on a national BCP-ALL clinical trial/registry. Where present, diagnostic material underwent cytogenetic, exome, methylome and transcriptome analysis. Outcome was analysed to define 3-year event free survival (EFS) and overall survival (OS). IG-MYC-r was identified in diverse cytogenetic backgrounds, co-existing with either: established BCP-ALL specific abnormalities (high hyperdiploidy n=3, KMT2A-rearrangement n=6, iAMP21 n=1, BCR-ABL n=1); BCL2/BCL6-rearrangements (n=15); or, most commonly, as the only defining feature (n=64). Within this final group, precursor-like V(D)J breakpoints predominated (8/9) and KRAS mutations were common (5/11). DNA methylation identified a cluster of V(D)J rearranged cases, clearly distinct from Burkitt leukaemia/lymphoma. Children with IG-MYC-r within that subgroup had 3-year EFS of 47% and OS of 60%, representing a high-risk BCP-ALL. To develop effective management strategies this patient group must be allowed access to contemporary, minimal residual disease adapted, prospective clinical trial protocols
Strawberry fields forever? Urban agriculture in developed countries: a review
International audienceFood production in cities has long been a tradition in many countries around the world and a mainstream activity for many developed countries. While urban agriculture plays an important role in increasing food security and social well-being, it comes with significant costs and constraints. Here, we review the growth of urban agriculture throughout the developed world in order to clarify the different benefits, risks, and hindrances associated with the practice. Through this analysis, we identify the need for better understanding of the following five aspects if urban agriculture is to make a meaningful contribution to food security and social well-being in the future: (1) the impacts of continued urban sprawl and loss of peri-urban agricultural land; (2) appropriate government and institutional support at local, regional, and country levels; (3) the role of urban agriculture in self-sufficiency of cities; (4) the risks posed by pollutants from agriculture to urban ecosystems and from urban ecosystems to agriculture; and (5) the carbon footprint of urban agriculture and use of “food miles.” If urban agriculture is to have a legitimate place in resolving the global food crisis as advocates claim, then it is time to take urban agriculture seriously and assess more rigorously both the positive and negative impacts, especially carbon emissions. Only then can the world’s limited resources be properly allocated to the development of urban agriculture
Thermal and Mechanical Behaviors of Concrete with Incorporation of Strontium-Based Phase Change Material (PCM)
Semiconductor–Liquid Junction: From Fundamentals to Solar Fuel Generating Structures
Historically, the investigation of the solid–liquid interface has seen four major breakthroughs: van Troostwijk and Deiman reported the first splitting of water in 1789 using a spark discharge source [1]. Becquerel observed the photoelectric effect at the solid–liquid interface in 1839 [2] and, 183 years after the first water splitting, Fujishima and Honda reported the light-induced dissociation of water at a TiO2 rutile electrode [3]. Three years later, Gerischer published an article demonstrating that a rectifying contact can be realized at the semiconductor–redox electrolyte junction upon judicious choice of the semiconductor–electrolyte pairing [4]. This latter work laid the basis for all present energy-converting electrochemical devices for the conversion of sunlight into electricity or fuels at the solid–liquid interface [5]. Numerous reports followed after this inception of photoelectrochemical energy conversion [6–16] which included the development of regenerative photoelectrochemical solar cells [17–21], water splitting half-cells [22, 23], excitonic solar cells [24], and the dye sensitization cell of Graetzel [25, 26] which represents the first photoelectrochemical solar cell that has been realized as a technical device
- …
