763 research outputs found

    Signatures of arithmetic simplicity in metabolic network architecture

    Get PDF
    Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that several of the properties predicted by the artificial chemistry model hold for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity

    Secular evolution versus hierarchical merging: galaxy evolution along the Hubble sequence, in the field and rich environments

    Full text link
    In the current galaxy formation scenarios, two physical phenomena are invoked to build disk galaxies: hierarchical mergers and more quiescent external gas accretion, coming from intergalactic filaments. Although both are thought to play a role, their relative importance is not known precisely. Here we consider the constraints on these scenarios brought by the observation-deduced star formation history on the one hand, and observed dynamics of galaxies on the other hand: the high frequency of bars and spirals, the high frequency of perturbations such as lopsidedness, warps, or polar rings. All these observations are not easily reproduced in simulations without important gas accretion. N-body simulations taking into account the mass exchange between stars and gas through star formation and feedback, can reproduce the data, only if galaxies double their mass in about 10 Gyr through gas accretion. Warped and polar ring systems are good tracers of this accretion, which occurs from cold gas which has not been virialised in the system's potential. The relative importance of these phenomena are compared between the field and rich clusters. The respective role of mergers and gas accretion vary considerably with environment.Comment: 18 pages, 8 figures, review paper to "Penetrating Bars through Masks of Cosmic Dust: the Hubble Tuning Fork Strikes a New Note", Pilanesberg, ed. D. Block et al., Kluwe

    Smart homes and their users:a systematic analysis and key challenges

    Get PDF
    Published research on smart homes and their users is growing exponentially, yet a clear understanding of who these users are and how they might use smart home technologies is missing from a field being overwhelmingly pushed by technology developers. Through a systematic analysis of peer-reviewed literature on smart homes and their users, this paper takes stock of the dominant research themes and the linkages and disconnects between them. Key findings within each of nine themes are analysed, grouped into three: (1) views of the smart home-functional, instrumental, socio-technical; (2) users and the use of the smart home-prospective users, interactions and decisions, using technologies in the home; and (3) challenges for realising the smart home-hardware and software, design, domestication. These themes are integrated into an organising framework for future research that identifies the presence or absence of cross-cutting relationships between different understandings of smart homes and their users. The usefulness of the organising framework is illustrated in relation to two major concerns-privacy and control-that have been narrowly interpreted to date, precluding deeper insights and potential solutions. Future research on smart homes and their users can benefit by exploring and developing cross-cutting relationships between the research themes identified

    Two naphthalene degrading bacteria belonging to the genera Paenibacillus and Pseudomonas isolated from a highly polluted lagoon perform different sensitivities to the organic and heavy metal contaminants

    Get PDF
    Two bacterial strains were isolated in the presence of naphthalene as the sole carbon and energy source from sediments of the Orbetello Lagoon, Italy, which is highly contaminated with both organic compounds and metals. 16S rRNA gene sequence analysis of the two isolates assigned the strains to the genera Paenibacillus and Pseudomonas. The effect of different contaminants on the growth behaviors of the two strains was investigated. Pseudomonas sp. ORNaP2 showed a higher tolerance to benzene, toluene, and ethylbenzene than Paenibacillus sp. ORNaP1. In addition, the toxicity of heavy metals potentially present as co-pollutants in the investigated site was tested. Here, strain Paenibacillus sp. ORNaP1 showed a higher tolerance towards arsenic, cadmium, and lead, whereas it was far more sensitive towards mercury than strain Pseudomonas sp. ORNaP2. These differences between the Gram-negative Pseudomonas and the Gram-positive Paenibacillus strain can be explained by different general adaptive response systems present in the two bacteria

    Extraforaminal ligament attachments of the thoracic spinal nerves in humans

    Get PDF
    An anatomical study of the extraforaminal attachments of the thoracic spinal nerves was performed using human spinal columns. The objectives of the study are to identify and describe the existence of ligamentous structures at each thoracic level that attach spinal nerves to structures at the extraforaminal region. During the last 120 years, several mechanisms have been described to protect the spinal nerve against traction. All the described structures were located inside the spinal canal proximal to the intervertebral foramen. Ligaments with a comparable function just outside the intervertebral foramen are mentioned ephemerally. No studies are available about ligamentous attachments of thoracic spinal nerves to the spine. Five embalmed human thoracic spines (Th2–Th11) were dissected. Bilaterally, the extraforaminal region was dissected to describe and measure anatomical structures and their relationships with the thoracic spinal nerves. Histology was done at the sites of attachment of the ligaments to the nerves and along the ligaments. The thoracic spinal nerves are attached to the transverse process of the vertebrae cranial and caudal to the intervertebral foramen. The ligaments consist mainly of collagenous fibers. In conclusion, at the thoracic level, direct ligamentous connections exist between extraforaminal thoracic spinal nerves and nearby structures. They may serve as a protective mechanism against traction and compression of the nerves by positioning the nerve in the intervertebral foramen

    Induction of proteasome expression in skeletal muscle is attenuated by inhibitors of NF-κB activation

    Get PDF
    The potential for inhibitors of nuclear factor-κB (NF-κB) activation to act as inhibitors of muscle protein degradation in cancer cachexia has been evaluated both in vitro and in vivo. Activation of NF-κB is important in the induction of proteasome expression and protein degradation by the tumour factor, proteolysis-inducing factor (PIF), since the cell permeable NF-κB inhibitor SN50 (18 μM) attenuated the expression of 205 proteasome α-subunits, two subunits of the 195 regulator MSSI and p42, and the ubiquitin-conjugating enzyme, E214k, as well as the decrease in myosin expression in murine myotubes. To assess the potential therapeutic benefit of NF-κB inhibitors on muscle atrophy in cancer cachexia, two potential inhibitors were employed; curcumin (50 μM) and resveratrol (30 μM). Both agents completely attenuated total protein degradation in murine myotubes at all concentrations of PIF, and attenuated the PIF-induced increase in expression of the ubiquitin-proteasome proteolytic pathway, as determined by the 'chymotrypsin-like' enzyme activity, proteasome subunits and E2 14k. However, curcumin (150 and 300 mg kg-1) was ineffective in preventing weight loss and muscle protein degradation in mice bearing the MAC16 tumour, whereas resveratrol (1 mg kg-1) significantly attenuated weight loss and protein degradation in skeletal muscle, and produced a significant reduction in NF-κB DNA-binding activity. The inactivity of curcumin was probably due to a low bioavailability. These results suggest that agents which inhibit nuclear translocation of NF-κB may prove useful for the treatment of muscle wasting in cancer cachexia

    Addressing Reported Pro-Apoptotic Functions of NF-κB: Targeted Inhibition of Canonical NF-κB Enhances the Apoptotic Effects of Doxorubicin

    Get PDF
    The ability of the transcription factor NF-κB to upregulate anti-apoptotic proteins has been linked to the chemoresistance of solid tumors to standard chemotherapy. In contrast, recent studies have proposed that, in response to doxorubicin, NF-κB can be pro-apoptotic through repression of anti-apoptotic target genes. However, there is little evidence analyzing the outcome of NF-κB inhibition on the cytotoxicity of doxorubicin in studies describing pro-apoptotic NF-κB activity. In this study, we further characterize the activation of NF-κB in response to doxorubicin and evaluate its role in chemotherapy-induced cell death in sarcoma cells where NF-κB is reported to be pro-apoptotic. Doxorubicin treatment in U2OS cells induced canonical NF-κB activity as evidenced by increased nuclear accumulation of phosphorylated p65 at serine 536 and increased DNA–binding activity. Co-treatment with a small molecule IKKβ inhibitor, Compound A, abrogated this response. RT–PCR evaluation of anti-apoptotic gene expression revealed that doxorubicin-induced transcription of cIAP2 was inhibited by Compound A, while doxorubicin-induced repression of other anti-apoptotic genes was unaffected by Compound A or siRNA to p65. Furthermore, the combination of doxorubicin and canonical NF-κB inhibition with Compound A or siRNA to p65 resulted in decreased cell viability measured by trypan blue staining and MTS assay and increased apoptosis measured by cleaved poly (ADP-ribose) polymerase and cleaved caspase 3 when compared to doxorubicin alone. Our results demonstrate that doxorubicin-induced canonical NF-κB activity associated with phosphorylated p65 is anti-apoptotic in its function and that doxorubicin-induced repression of anti-apoptotic genes occurs independent of p65. Therefore, combination therapies incorporating NF-κB inhibitors together with standard chemotherapies remains a viable method to improve the clinical outcomes in patients with advanced stage malignancies

    Metformin Attenuates Palmitate-Induced Endoplasmic Reticulum Stress, Serine Phosphorylation of IRS-1 and Apoptosis in Rat Insulinoma Cells

    Get PDF
    Lipotoxicity refers to cellular dysfunctions caused by elevated free fatty acid levels playing a central role in the development and progression of obesity related diseases. Saturated fatty acids cause insulin resistance and reduce insulin production in the pancreatic islets, thereby generating a vicious cycle, which potentially culminates in type 2 diabetes. The underlying endoplasmic reticulum (ER) stress response can lead to even β-cell death (lipoapoptosis). Since improvement of β-cell viability is a promising anti-diabetic strategy, the protective effect of metformin, a known insulin sensitizer was studied in rat insulinoma cells. Assessment of palmitate-induced lipoapoptosis by fluorescent microscopy and by detection of caspase-3 showed a significant decrease in metformin treated cells. Attenuation of β-cell lipotoxicity was also revealed by lower induction/activation of various ER stress markers, e.g. phosphorylation of eukaryotic initiation factor 2α (eIF2α), c-Jun N-terminal kinase (JNK), insulin receptor substrate-1 (IRS-1) and induction of CCAAT/enhancer binding protein homologous protein (CHOP). Our results indicate that the β-cell protective activity of metformin in lipotoxicity can be at least partly attributed to suppression of ER stress

    Naturally Occurring Osmolyte, Trehalose Induces Functional Conformation in an Intrinsically Disordered Activation Domain of Glucocorticoid Receptor

    Get PDF
    Intrinsically disordered (ID) regions are frequently found in the activation domains of many transcription factors including nuclear hormone receptors. It is believed that these ID regions promote molecular recognition by creating large surfaces suitable for interactions with their specific protein binding partners, which is a critical component of gene regulation by transcription factors. It has been hypothesized that conditional folding of these activation domains may be a prerequisite for their efficient interaction with specific coregulatory proteins, and subsequent transcriptional activity leading to the regulation of target gene(s). In this study, we tested whether a naturally occurring osmolyte, trehalose can promote functionally ordered conformation in glucocorticoid receptor's major activation function domain, AF1, which is found to exist as an ID protein, and requires an efficient interaction with coregulatory proteins for optimal activity. Our data show that trehalose induces an ordered conformation in AF1 such that its interaction with steroid receptor coactivator-1 (SRC-1), a critical coregulator of glucocorticoid receptor's activity, is greatly enhanced
    • …
    corecore