13,768 research outputs found

    Double electron capture in 156Dy, 162Er and 168Yb

    Get PDF
    The double electron capture half-lives of 156Dy, 162Er and 168Yb are evaluated using the pseudo SU(3) model, which describes ground and excited bands as well as their B(E2) and B(M1) transition strengths in remarkable agreement with experiment. The best candidate for experimental detection is the decay 156Dy -> 156Gd, with tau{1/2} (0+{gs} --> 0+{gs}) = 2.74 E22 yrs and tau{1/2} (0+{gs} --> 0+{1}) = 8.31 E24 yrs.Comment: 7 pages, 1 figure. Physics Letters B, in pres

    Superconductivity from Undressing

    Full text link
    Photoemission experiments in high TcT_c cuprates indicate that quasiparticles are heavily 'dressed' in the normal state, particularly in the low doping regime. Furthermore these experiments show that a gradual undressing occurs both in the normal state as the system is doped and the carrier concentration increases, as well as at fixed carrier concentration as the temperature is lowered and the system becomes superconducting. A similar picture can be inferred from optical experiments. It is argued that these experiments can be simply understood with the single assumption that the quasiparticle dressing is a function of the local carrier concentration. Microscopic Hamiltonians describing this physics are discussed. The undressing process manifests itself in both the one-particle and two-particle Green's functions, hence leads to observable consequences in photoemission and optical experiments respectively. An essential consequence of this phenomenology is that the microscopic Hamiltonians describing it break electron-hole symmetry: these Hamiltonians predict that superconductivity will only occur for carriers with hole-like character, as proposed in the theory of hole superconductivity

    Two-site dynamical mean field theory for the dynamic Hubbard model

    Full text link
    At zero temperature, two-site dynamical mean field theory is applied to the Dynamic Hubbard model. The Dynamic Hubbard model describes the orbital relaxation that occurs when two electrons occupy the same site, by using a two-level boson field at each site. At finite boson frequency, the appearance of a Mott gap is found to be enhanced even though it shows a metallic phase with the same bare on-site interaction UU in the conventional Hubbard model. The lack of electron-hole symmetry is highlighted through the quasi-particle weight and the single particle density of states at different fillings, which qualitatively differentiates the dynamic Hubbard model from other conventional Hubbard-like models.Comment: 13 pages, 15 figure

    Superconductivity from Undressing. II. Single Particle Green's Function and Photoemission in Cuprates

    Full text link
    Experimental evidence indicates that the superconducting transition in high TcT_c cuprates is an 'undressing' transition. Microscopic mechanisms giving rise to this physics were discussed in the first paper of this series. Here we discuss the calculation of the single particle Green's function and spectral function for Hamiltonians describing undressing transitions in the normal and superconducting states. A single parameter, Υ\Upsilon, describes the strength of the undressing process and drives the transition to superconductivity. In the normal state, the spectral function evolves from predominantly incoherent to partly coherent as the hole concentration increases. In the superconducting state, the 'normal' Green's function acquires a contribution from the anomalous Green's function when Υ \Upsilon is non-zero; the resulting contribution to the spectral function is positivepositive for hole extraction and negativenegative for hole injection. It is proposed that these results explain the observation of sharp quasiparticle states in the superconducting state of cuprates along the (π,0)(\pi,0) direction and their absence along the (π,π)(\pi,\pi) direction.Comment: figures have been condensed in fewer pages for easier readin

    Microscopic description of the scissors mode in odd-mass heavy deformed nuclei

    Get PDF
    Pseudo-SU(3) shell-model results are reported for M1 excitation strengths in 157-Gd, 163-Dy and 169-Tm in the energy range between 2 and 4 MeV. Non-zero pseudo-spin couplings between the configurations play a very important role in determining the M1 strength distribution, especially its rapidly changing fragmentation pattern which differs significantly from what has been found in neighboring even-even systems. The results suggest one should examine contributions from intruder levels.Comment: 5 pages, 3 figure

    Excited bands in odd-mass rare-earth nuclei

    Full text link
    Normal parity bands are studied in 157Gd, 163Dy and 169Tm using the pseudo SU(3) shell model. Energies and B(E2) transition strengths of states belonging to six low-lying rotational bands with the same parity in each nuclei are presented. The pseudo SU(3) basis includes states with pseudo-spin 0 and 1, and 1/2 and 3/2, for even and odd number of nucleons, respectively. States with pseudo-spin 1 and 3/2 must be included for a proper description of some excited bands.Comment: 8 pages, 6 figures, Submitted to Phys. Rev.
    corecore