463 research outputs found

    Transient resonances in the inspirals of point particles into black holes

    Get PDF
    We show that transient resonances occur in the two body problem in general relativity, in the highly relativistic, extreme mass-ratio regime for spinning black holes. These resonances occur when the ratio of polar and radial orbital frequencies, which is slowly evolving under the influence of gravitational radiation reaction, passes through a low order rational number. At such points, the adiabatic approximation to the orbital evolution breaks down, and there is a brief but order unity correction to the inspiral rate. Corrections to the gravitational wave signal's phase due to resonance effects scale as the square root of the inverse of mass of the small body, and thus become large in the extreme-mass-ratio limit, dominating over all other post-adiabatic effects. The resonances make orbits more sensitive to changes in initial data (though not quite chaotic), and are genuine non-perturbative effects that are not seen at any order in a standard post-Newtonian expansion. Our results apply to an important potential source of gravitational waves, the gradual inspiral of white dwarfs, neutron stars, or black holes into much more massive black holes. It is hoped to exploit observations of these sources to map the spacetime geometry of black holes. However, such mapping will require accurate models of binary dynamics, which is a computational challenge whose difficulty is significantly increased by resonance effects. We estimate that the resonance phase shifts will be of order a few tens of cycles for mass ratios ∌10−6\sim 10^{-6}, by numerically evolving fully relativistic orbital dynamics supplemented with an approximate, post-Newtonian self-force.Comment: 4 pages, 1 figure, minor correction

    The potential of ground gravity measurements to validate GRACE data

    Get PDF
    New satellite missions are returning high precision, time-varying, satellite measurements of the Earth’s gravity field. The GRACE mission is now in its calibration/- validation phase and first results of the gravity field solutions are imminent. We consider here the possibility of external validation using data from the superconducting gravimeters in the European sub-array of the Global Geodynamics Project (GGP) as ‘ground truth’ for comparison with GRACE. This is a pilot study in which we use 14 months of 1-hour data from the beginning of GGP (1 July 1997) to 30 August 1998, when the Potsdam instrument was relocated to South Africa. There are 7 stations clustered in west central Europe, and one station, Metsahovi in Finland. We remove local tides, polar motion, local and global air pressure, and instrument drift and then decimate to 6-hour samples. We see large variations in the time series of 5–10<i>”</i>gal between even some neighboring stations, but there are also common features that correlate well over the 427-day period. The 8 stations are used to interpolate a minimum curvature (gridded) surface that extends over the geographical region. This surface shows time and spatial coherency at the level of 2– 4<i>”</i>gal over the first half of the data and 1–2<i>”</i>gal over the latter half. The mean value of the surface clearly shows a rise in European gravity of about 3”gal over the first 150 days and a fairly constant value for the rest of the data. The accuracy of this mean is estimated at 1<i>”</i>gal, which compares favorably with GRACE predictions for wavelengths of 500 km or less. Preliminary studies of hydrology loading over Western Europe shows the difficulty of correlating the local hydrology, which can be highly variable, with large-scale gravity variations.<br><br><b>Key words. </b>GRACE, satellite gravity, superconducting gravimeter, GGP, ground trut

    Symmetry-dependent Mn-magnetism in Al69.8Pd12.1Mn18.1

    Get PDF
    Abstract.: We investigated the stability of magnetic moments in Al69.8Pd12.1Mn18.1. This alloy exists in both, the icosahedral (i) and the decagonal (d) quasicrystalline form. The transition from the i- to the d-phase is achieved by a simple heat treatment. We present the results of measurements of the 27Al NMR-response, the dc magnetic susceptibility, and the low-temperature specific heat of both phases. In the icosahedral compound, the majority of the Mn ions carries a magnetic moment. Their number is reduced by approximately a factor of two by transforming the alloy to its decagonal variety. For both compounds, we have indications for two different local environments of the Al nuclei. The first reflects a low density of states of conduction electrons and a weak coupling of the Al nuclei to the Mn-moments. The second type of environment implies a large d-electron density of states at the Fermi level and a strong coupling to the magnetic Mn moments. Spin-glass freezing transitions are observed at Tdecaf=12K for the decagonal, and Ticof=19 K for the icosahedral phas

    Semianalytical estimates of scattering thresholds and gravitational radiation in ultrarelativistic black hole encounters

    Full text link
    Ultrarelativistic collisions of black holes are ideal gedanken experiments to study the nonlinearities of general relativity. In this paper we use semianalytical tools to better understand the nature of these collisions and the emitted gravitational radiation. We explain many features of the energy spectra extracted from numerical relativity simulations using two complementary semianalytical calculations. In the first calculation we estimate the radiation by a "zero-frequency limit" analysis of the collision of two point particles with finite impact parameter. In the second calculation we replace one of the black holes by a point particle plunging with arbitrary energy and impact parameter into a Schwarzschild black hole, and we explore the multipolar structure of the radiation paying particular attention to the near-critical regime. We also use a geodesic analogy to provide qualitative estimates of the dependence of the scattering threshold on the black hole spin and on the dimensionality of the spacetime.Comment: 29 pages, 19 figure, 6 tables, minor changes to match version in press in Phys.Rev.

    Detection of Phase Jumps of Free Core Nutation of the Earth and their Concurrence with Geomagnetic Jerks

    Get PDF
    We detected phase jumps of the Free Core Nutation (FCN) of the Earth directly from the analysis of the Very Long Baseline Interferometer (VLBI) observation of the Earth rotation for the period 1984-2003 by applying the Weighted Wavelet Z-Transform (WWZ) method and the Short-time Periodogram with the Gabor function (SPG) method. During the period, the FCN had two significant phase jumps in 1992 and 1998. These epochs coincide with the reported occurrence of geomagnetic jerks.Comment: 8 pages, 4 figure

    Unconventional Charge Ordering in Na0.70CoO2 below 300 K

    Full text link
    We present the results of measurements of the dc-magnetic susceptibility chi(T) and the 23Na-NMR response of Na_{0.70}CoO_{2} at temperatures between 50 and 340 K. The chi(T) data suggest that for T > 75 K, the Co ions adopt an effective configuration of Co^{3.4+}. The 23Na-NMR response reveals pronounced anomalies near 250 and 295 K, but no evidence for magnetic phase transitions is found in chi(T). Our data suggest the onset of a dramatic change in the Co 3d-electron spin dynamics at 295 K. This process is completed at 230 K. Our results maybe interpreted as evidence for either a tendency to electron localization or an unconventional charge-density wave phenomenon within the cobalt oxide layer, CoO_2, 3d electron system near room temperature.Comment: 4 pages, 4 figures, re-submitted to Physical Review Letters. The manuscript has been revised following the recommendations of the referees. The discussion section contains substantial change

    Entropy of vortex cores on the border of the superconductor-to-insulator transition in an underdoped cuprate

    Full text link
    We present a study of Nernst effect in underdoped La2−xSrxCuO4La_{2-x}Sr_xCuO_4 in magnetic fields as high as 28T. At high fields, a sizeable Nernst signal was found to persist in presence of a field-induced non-metallic resistivity. By simultaneously measuring resistivity and the Nernst coefficient, we extract the entropy of vortex cores in the vicinity of this field-induced superconductor-insulator transition. Moreover, the temperature dependence of the thermo-electric Hall angle provides strong constraints on the possible origins of the finite Nernst signal above TcT_c, as recently discovered by Xu et al.Comment: 5 Pages inculding 4 figure

    Successful Use of Squeezed-Fat Grafts to Correct a Breast Affected by Poland Syndrome

    Get PDF
    This study attempted to reconstruct deformities of a Poland syndrome patient using autologous fat tissues. All injected fat tissues were condensed by squeezing centrifugation. Operations were performed four times with intervals over 6 months. The total injection volume was 972 ml, and the maintained volume of 628 ml was measured by means of a magnetic resonance image (MRI). The entire follow-up period was 4.5 years. After surgery, several small cysts and minimal calcifications were present but no significant complications. The cosmetic outcomes and volume maintenance rates were excellent despite the overlapped large-volume injections. In conclusion, higher condensation of fat tissues through squeezing centrifugation would help to achieve better results in volume maintenance and reduce complications. It is necessary, however, to perform more comparative studies with many clinical cases for a more scientific analysis. The study experiments with squeezed fat simply suggest a hypothesis that squeezing centrifugation could select healthier cells through pressure disruption of relatively thinner membranes of larger, more vulnerable and more mature fat cells

    Identification of a Specific Vimentin Isoform That Induces an Antibody Response in Pancreatic Cancer

    Get PDF
    Pancreatic cancer has a poor prognosis, in part due to lack of early detection. The identification of circulating tumor antigens or their related autoantibodies provides a means for early cancer diagnosis. We have used a proteomic approach to identify proteins that commonly induce a humoral response in pancreatic cancer. Proteins from a pancreatic adenocarcinoma cell line (Panc-1) were subjected to two-dimensional PAGE, followed by Western blot analysis in which individual sera were tested for autoantibodies. Sera from 36 newly diagnosed patients with pancreatic cancer, 18 patients with chronic pancreatitis and 15 healthy subjects were analyzed. Autoantibodies were detected against a protein identified by mass spectrometry as vimentin, in sera from 16/36 patients with pancreatic cancer (44.4%). Only one of 18 chronic pancreatitis patients and none of the healthy controls exhibited reactivity against this vimentin isoform. Interestingly, none of several other isoforms of vimentin detectable in 2-D gels exhibited reactivity with patient sera. Vimentin protein expression levels were investigated by comparing the integrated intensity of spots visualized in 2-D PAGE gels of various cancers. Pancreatic tumor tissues showed greater than a 3-fold higher expression of total vimentin protein than did the lung, colon, and ovarian tumors that were analyzed. The specific antigenic isoform was found at 5–10 fold higher levels. The detection of autoantibodies to this specific isoform of vimentin may have utility for the early diagnosis of pancreatic cancer
    • 

    corecore