78 research outputs found

    Optical nonlinear dynamics with cold atoms in a cavity

    Full text link
    This paper presents the nonlinear dynamics of laser cooled and trapped cesium atoms placed inside an optical cavity and interacting with a probe light beam slightly detuned from the 6S1/2(F=4) to 6P3/2(F=5) transition. The system exhibits very strong bistability and instabilities. The origin of the latter is found to be a competition between optical pumping and non-linearities due to saturation of the optical transition.Comment: 6 pages, 7 figures, LaTe

    Vibrational spectroscopy of H2+: precise evaluation of the Zeeman effect

    Full text link
    We present an accurate computation of the g-factors of the hyperfine states of the hydrogen molecular ion H2+. The results are in good agreement with previous experiments, and can be tested further by rf spectroscopy. Their implication for high-precision two-photon vibrational spectroscopy of H2+ is also discussed. It is found that the most intense hyperfine components of two-photon lines benefit from a very small Zeeman splitting

    Polarization squeezing with cold atoms

    Full text link
    We study the interaction of a nearly resonant linearly polarized laser beam with a cloud of cold cesium atoms in a high finesse optical cavity. We show theoretically and experimentally that the cross-Kerr effect due to the saturation of the optical transition produces quadrature squeezing on both the mean field and the orthogonally polarized vacuum mode. An interpretation of this vacuum squeezing as polarization squeezing is given and a method for measuring quantum Stokes parameters for weak beams via a local oscillator is developed

    Transverse-mode coupling in a Kerr medium

    Full text link
    We analyze nonlinear transverse mode coupling in a Kerr medium placed in an optical cavity and its influence on bistability and different kinds of quantum noise reduction. Even for an input beam that is perfectly matched to a cavity mode, the nonlinear coupling produces an excess noise in the fluctuations of the output beam. Intensity squeezing seems to be particularly robust with respect to mode coupling, while quadrature squeezing is more sensitive. However, it is possible to find a mode the quadrature squeezing of which is not affected by the coupling.Comment: 11 pages, 6 figures, LaTe

    Polarization dependence of four-wave mixing in a degenerate two-level system

    Get PDF
    Nearly degenerate four-wave mixing (NDFWM) within a closed degenerate two-level atomic transition is theoretically and experimentally examined. Using the model presented by A. Lezama et al [Phys. Rev. A 61, 013801 (2000)] the NDFWM spectra corresponding to different pump and probe polarization cases are calculated and discussed. The calculated spectra are compared to the observation of NDFWM within the 6S1/2(F=4)6P3/2(F=5)6S_{1/2}(F=4)\to 6P_{3/2}(F=5) transition of cesium in a phase conjugation experiment using magneto optically cooled atomsComment: 10 pages, 13 figures; submitted to Phys. Rev.

    Atomic squeezing in a Lambda system

    Full text link
    Using a quantum theory for an ensemble of three-level atoms (lambda) placed in an optical cavity abd driven by electromagnetic fields, we show that the long-lived spin associated with the ground state sublevels can be squeezed. Two kinds of squeezing are obtained: self-spin squeezing, when the input fields are coherent states and the atomic ensemble exhibit a large non-linearity; squeezing transfer, when one of the incoming fields is squeezed.Comment: 26 pages, 8 figure

    Molecular Dynamics Simulation of Sympathetic Crystallization of Molecular Ions

    Full text link
    It is shown that the translational degrees of freedom of a large variety of molecules, from light diatomic to heavy organic ones, can be cooled sympathetically and brought to rest (crystallized) in a linear Paul trap. The method relies on endowing the molecules with an appropriate positive charge, storage in a linear radiofrequency trap, and sympathetic cooling. Two well--known atomic coolant species, 9Be+{}^9{\hbox{Be}}^+ and 137Ba+{}^{137}{\hbox{Ba}}^+, are sufficient for cooling the molecular mass range from 2 to 20,000 amu. The large molecular charge required for simultaneous trapping of heavy molecules and of the coolant ions can easily be produced using electrospray ionization. Crystallized molecular ions offer vast opportunities for novel studies.Comment: Accepted for publication in Phys. Rev.

    Optical frequency measurement of the 1S-3S two-photon transition in hydrogen

    Full text link
    This article reports the first optical frequency measurement of the 1S3S1\mathrm{S}-3\mathrm{S} transition in hydrogen. The excitation of this transition occurs at a wavelength of 205 nm which is obtained with two frequency doubling stages of a titanium sapphire laser at 820 nm. Its frequency is measured with an optical frequency comb. The second-order Doppler effect is evaluated from the observation of the motional Stark effect due to a transverse magnetic field perpendicular to the atomic beam. The measured value of the 1S1/2(F=1)3S1/2(F=1)1\mathrm{S}_{1/2}(F=1)-3\mathrm{S}_{1/2}(F=1) frequency splitting is 2922742936.729(13)MHz2 922 742 936.729 (13) \mathrm{MHz} with a relative uncertainty of 4.5×10124.5\times10^{-12}. After the measurement of the 1S2S1\mathrm{S}-2\mathrm{S} frequency, this result is the most precise of the optical frequencies in hydrogen

    Development of a PbWO4 Detector for Single-Shot Positron Annihilation Lifetime Spectroscopy at the GBAR Experiment

    Get PDF
    We have developed a PbWO4 (PWO) detector with a large dynamic range to measure the intensity of a positron beam and the absolute density of the ortho-positronium (o-Ps) cloud it creates. A simulation study shows that a setup based on such detectors may be used to determine the angular distribution of the emission and reflection of o-Ps to reduce part of the uncertainties of the measurement. These will allow to improve the precision in the measurement of the cross-section for the (anti)hydrogen formation by (anti)proton-positronium charge exchange and to optimize the yield of antihydrogen ion which is an essential parameter in the GBAR experiment

    Two-color rubidium fiber frequency standard

    Get PDF
    We demonstrate an optical frequency standard based on rubidium vapor loaded within a hollow-core photonic crystal fiber. We use the 5S(1/2)→5D(5/2) two-photon transition, excited with two lasers at 780 and 776 nm. The sum-frequency of these lasers is stabilized to this transition using modulation transfer spectroscopy, demonstrating a fractional frequency stability of 9.8×10(-12) at 1 s. The current performance limitations are presented, along with a path to improving the performance by an order of magnitude. This technique will deliver a compact, robust standard with potential applications in commercial and industrial environments.C. Perrella, P. S. Light, J. D. Anstie, F. N. Baynes, F. Benabid, and A. N. Luite
    corecore