54 research outputs found

    Overexpression of Serpin Squamous Cell Carcinoma Antigens in Psoriatic Skin

    Get PDF
    Squamous cell carcinoma antigen belongs to the serpin family and is used for the diagnosis and management of squamous cell carcinoma. We investigated the involvement of squamous cell carcinoma antigen in psoriasis, as it is always detected in the sera of patients with psoriasis. Squamous cell carcinoma antigen localization in psoriatic epidermis varied depending on its concentration in the patient's sera. When its level was low in serum, weak and scattered staining was observed in the granular layer. With a high concentration of squamous cell carcinoma antigen, strong staining through the suprabasal to granular layer and condensed staining around the plasma membrane or intracellular space was detected in the affected epidermis. Interestingly, squamous cell carcinoma antigen was abundant in nuclei of the granular layer cells and elongated rete ridges. Immunoelectron microscopy confirmed the localization of squamous cell carcinoma antigen in the nuclei as well as in the periphery of the cell membrane. A cDNA library was constructed from psoriatic epidermis and both clones, SCCA1 and SCCA2, were obtained. Attempts to raise specific antibodies or to prepare cRNA probes for SCCA1 and SCCA2 were unsuccessful because of their nearly identical structures. A primer pair from each reactive site sequence enabled us to give a distinctive product for SCCA1 and SCCA2 by reverse transcription polymerase chain reaction. Analysis using these primers demonstrated that the SCCA2 transcript was specifically expressed in psoriatic skin tissues. Our results suggest that overexpression of squamous cell carcinoma antigens is associated with the disease activity of psoriasis

    Microscopic Raman Mapping of Epitaxial Graphene on 4H-SiC(0001)

    Get PDF
    We propose a quality control method for wafer-scale epitaxial graphene grown on SiC substrates. The peak position of Raman spectra of epitaxial graphene is an excellent indicator of film quality and reveals irregularities, such as graphene thickness inhomogeneity and SiC substrate defects. A comparison of microscopic Raman maps and scanning probe microscopy images of the same position of the sample revealed that wave numbers of Raman peaks (G and 2D band peaks) were strongly correlated with the strain in the graphene film. The increase in number of graphene layers (2 to 3–4 layers) induced phonon softening (~6 cm-1) and broadening (~6 cm-1) of the 2D band peak. Significant phonon softening and abnormal broadening of the Raman peaks were observed at residual scratches on the SiC substrate. The quantitative layer number distribution of graphene on SiC is successfully estimated from the wave number distribution of the 2D band peak

    Inwardly rectifying potassium channels (KIR) in GtoPdb v.2021.3

    Get PDF
    The 2TM domain family of K channels are also known as the inward-rectifier K channel family. This family includes the strong inward-rectifier K channels (Kir2.x) that are constitutively active, the G-protein-activated inward-rectifier K channels (Kir3.x) and the ATP-sensitive K channels (Kir6.x, which combine with sulphonylurea receptors (SUR1-3)). The pore-forming α subunits form tetramers, and heteromeric channels may be formed within subfamilies (e.g. Kir3.2 with Kir3.3)

    Inwardly rectifying potassium channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The 2TM domain family of K channels are also known as the inward-rectifier K channel family. This family includes the strong inward-rectifier K channels (Kir2.x) that are constitutively active, the G-protein-activated inward-rectifier K channels (Kir3.x) and the ATP-sensitive K channels (Kir6.x, which combine with sulphonylurea receptors (SUR1-3)). The pore-forming α subunits form tetramers, and heteromeric channels may be formed within subfamilies (e.g. Kir3.2 with Kir3.3)

    Effects of Calcination Temperature and Acid-Base Properties on Mixed Potential Ammonia Sensors Modified by Metal Oxides

    Get PDF
    Mixed potential sensors were fabriated using yttria-stabilized zirconia (YSZ) as a solid electrolyte and a mixture of Au and various metal oxides as a sensing electrode. The effects of calcination temperature ranging from 600 to 1,000 °C and acid-base properties of the metal oxides on the sensing properties were examined. The selective sensing of ammonia was achieved by modification of the sensing electrode using MoO3, Bi2O3 and V2O5, while the use of WO3, Nb2O5 and MgO was not effective. The melting points of the former group were below 820 °C, while those of the latter group were higher than 1,000 °C. Among the former group, the selective sensing of ammonia was strongly dependent on the calcination temperature, which was optimum around melting point of the corresponding metal oxides. The good spreading of the metal oxides on the electrode is suggested to be one of the important factors. In the former group, the relative response of ammonia to propene was in the order of MoO3 > Bi2O3 > V2O5, which agreed well with the acidity of the metal oxides. The importance of the acidic properties of metal oxides for ammonia sensing was clarified

    Behavior of Powder as Interlayer Materials of Joints in Pulsed Electric Current Bonding

    No full text

    Measurement of Sintering Gas Release Behavior of Fe Powder by Gas Chromatograph Method

    No full text

    Felkin-Anh Model from an Orbital Phase Perspective: Diastereoselectivity in Nucleophilic Addition to 2,3-Bis(trifluoromethyl)bicyclo[2.2.1]heptan-7-one

    No full text
    To address the electronic effect in nucleophilic addition, we often use the Felkin-Anh model, in which the most sigma-electron-withdrawing group (.sigma.EWG) at the a-position of the carbonyl should be located anti to the nucleophile approach. The diastereoselectivity is often explained by the antiperiplanar effect of the .sigma.EWG. Reetz and Frenking reported that the FMO, the LUMO in the a-substituted ketone, has greater expansion anti the .sigma.EWG. Thus, the FMO theory can also apply to this diastereoselectivity. However, there is still no explanation for why the LUMO has greater expansion anti to the .sigma.EWG and toward the nucleophile approach with this conformation, as is suggested by the FMO theory. We show here that the phase-continuous cyclic orbital interaction among nNu:--.pi.*C=O-.sigma.*C-A/vic-.sigma.*CC/gem- controls the diastereoselectivity, which is confirmed with theoretical calculations and the bond model analysis using a conformationally-fixed bicyclic molecule, 2,3-bis(trifluoromethyl)bicyclo[2.2.1]heptan-7-one 1, as a model.</p
    • …
    corecore