219 research outputs found

    Palaeoclimate inferred from δ18O and palaeobotanical indicators in freshwater tufa of Lake Äntu Sinijärv, Estonia

    Get PDF
    We investigated a 3.75-m-long lacustrine sediment record from Lake Äntu Sinijärv, northern Estonia, which has a modeled basal age >12,800 cal yr BP. Our multi-proxy approach focused on the stable oxygen isotope composition (δ18O) of freshwater tufa. Our new palaeoclimate information for the Eastern Baltic region, based on high-resolution δ18O data (219 samples), is supported by pollen and plant macrofossil data. Radiocarbon dates were used to develop a core chronology and estimate sedimentation rates. Freshwater tufa precipitation started ca. 10,700 cal yr BP, ca. 2,000 years later than suggested by previous studies on the same lake. Younger Dryas cooling is documented clearly in Lake Äntu Sinijärv sediments by abrupt appearance of diagnostic pollen (Betula nana, Dryas octopetala), highest mineral matter content in sediments (up to 90 %) and low values of δ18O (less than −12 ‰). Globally recognized 9.3- and 8.2-ka cold events are weakly defined by negative shifts in δ18O values, to −11.3 and −11.7 ‰, respectively, and low concentrations of herb pollen and charcoal particles. The Holocene thermal maximum (HTM) is palaeobotanically well documented by the first appearance and establishment of nemoral thermophilous taxa and presence of water lilies requiring warm conditions. Isotope values show an increasing trend during the HTM, from −11.5 to −10.5 ‰. Relatively stable environmental conditions, represented by only a small-scale increase in δ18O (up to 1 ‰) and high pollen concentrations between 5,000 and 3,000 cal yr BP, were followed by a decrease in δ18O, reaching the most negative value (−12.7 ‰) recorded in the freshwater tufa ca. 900 cal yr BP

    Stochastic Modeling for the Expression of a Gene Regulated by Competing Transcription Factors

    Get PDF
    It is widely accepted that gene expression regulation is a stochastic event. The common approach for its computer simulation requires detailed information on the interactions of individual molecules, which is often not available for the analyses of biological experiments. As an alternative approach, we employed a more intuitive model to simulate the experimental result, the Markov-chain model, in which a gene is regulated by activators and repressors, which bind the same site in a mutually exclusive manner. Our stochastic simulation in the presence of both activators and repressors predicted a Hill-coefficient of the dose-response curve closer to the experimentally observed value than the calculated value based on the simple additive effects of activators alone and repressors alone. The simulation also reproduced the heterogeneity of gene expression levels among individual cells observed by Fluorescence Activated Cell Sorting analysis. Therefore, our approach may help to apply stochastic simulations to broader experimental data

    Modeling the evolution of a classic genetic switch

    Get PDF
    Abstract Background The regulatory network underlying the yeast galactose-use pathway has emerged as a model system for the study of regulatory network evolution. Evidence has recently been provided for adaptive evolution in this network following a whole genome duplication event. An ancestral gene encoding a bi-functional galactokinase and co-inducer protein molecule has become subfunctionalized as paralogous genes (GAL1 and GAL3) in Saccharomyces cerevisiae, with most fitness gains being attributable to changes in cis- regulatory elements. However, the quantitative functional implications of the evolutionary changes in this regulatory network remain unexplored. Results We develop a modeling framework to examine the evolution of the GAL regulatory network. This enables us to translate molecular changes in the regulatory network to changes in quantitative network function. We computationally reconstruct an inferred ancestral version of the network and trace the evolutionary paths in the lineage leading to S. cerevisiae. We explore the evolutionary landscape of possible regulatory networks and find that the operation of intermediate networks leading to S. cerevisiae differs substantially depending on the order in which evolutionary changes accumulate; in particular, we systematically explore evolutionary paths and find that some network features cannot be optimized simultaneously. Conclusions We find that a computational modeling approach can be used to analyze the evolution of a well-studied regulatory network. Our results are consistent with several experimental studies of the evolutionary of the GAL regulatory network, including increased fitness in Saccharomyces due to duplication and adaptive regulatory divergence. The conceptual and computational tools that we have developed may be applicable in further studies of regulatory network evolution

    Tibiofibular syndesmosis in acute ankle fractures: additional value of an oblique MR image plane

    Get PDF
    Item does not contain fulltextOBJECTIVE: To evaluate the additional value of a 45� oblique MRI scan plane for assessing the anterior and posterior distal tibiofibular syndesmotic ligaments in patients with an acute ankle fracture. MATERIALS AND METHODS: Prospectively, data were collected for 44 consecutive patients with an acute ankle fracture who underwent a radiograph (AP, lateral, and mortise view) as well as an MRI in both the standard three orthogonal planes and in an additional 45� oblique plane. The fractures on the radiographs were classified according to Lauge-Hansen (LH). The anterior (ATIFL) and posterior (PTIFL) distal tibiofibular ligaments, as well as the presence of a bony avulsion in both the axial and oblique planes was evaluated on MRI. MRI findings regarding syndesmotic injury in the axial and oblique planes were compared to syndesmotic injury predicted by LH. Kappa and the agreement score were calculated to determine the interobserver agreement. The Wilcoxon signed rank test and McNemar's test were used to compare the two scan planes. RESULTS: The interobserver agreement (?) and agreement score [AS (\%)] regarding injury of the ATIFL and PTIFL and the presence of a fibular or tibial avulsion fracture were good to excellent in both the axial and oblique image planes (? 0.61-0.92, AS 84-95\%). For both ligaments the oblique image plane indicated significantly less injury than the axial plane (p?<?0.001). There was no significant difference in detection of an avulsion fracture in the axial or oblique plane, neither anteriorly (p?=?0.50) nor posteriorly (p?=?1.00). With syndesmotic injury as predicted by LH as comparison, the specificity in the oblique MR plane increased for both anterior (to 86\% from 7\%) and posterior (to 86\% from 48\%) syndesmotic injury when compared to the axial plane. CONCLUSION: Our results show the additional value of an 45� oblique MR image plane for detection of injury of the anterior and posterior distal tibiofibular syndesmoses in acute ankle fractures. Findings of syndesmotic injury in the oblique MRI plane were closer to the diagnosis as assumed by the Lauge-Hansen classification than in the axial plane. With more accurate information, the surgeon can better decide when to stabilize syndesmotic injury in acute ankle fractures

    Design, Validation and Annotation of Transcriptome-Wide Oligonucleotide Probes for the Oligochaete Annelid Eisenia fetida

    Get PDF
    High density oligonucleotide probe arrays have increasingly become an important tool in genomics studies. In organisms with incomplete genome sequence, one strategy for oligo probe design is to reduce the number of unique probes that target every non-redundant transcript through bioinformatic analysis and experimental testing. Here we adopted this strategy in making oligo probes for the earthworm Eisenia fetida, a species for which we have sequenced transcriptome-scale expressed sequence tags (ESTs). Our objectives were to identify unique transcripts as targets, to select an optimal and non-redundant oligo probe for each of these target ESTs, and to annotate the selected target sequences. We developed a streamlined and easy-to-follow approach to the design, validation and annotation of species-specific array probes. Four 244K-formatted oligo arrays were designed using eArray and were hybridized to a pooled E. fetida cRNA sample. We identified 63,541 probes with unsaturated signal intensities consistently above the background level. Target transcripts of these probes were annotated using several sequence alignment algorithms. Significant hits were obtained for 37,439 (59%) probed targets. We validated and made publicly available 63.5K oligo probes so the earthworm research community can use them to pursue ecological, toxicological, and other functional genomics questions. Our approach is efficient, cost-effective and robust because it (1) does not require a major genomics core facility; (2) allows new probes to be easily added and old probes modified or eliminated when new sequence information becomes available, (3) is not bioinformatics-intensive upfront but does provide opportunities for more in-depth annotation of biological functions for target genes; and (4) if desired, EST orthologs to the UniGene clusters of a reference genome can be identified and selected in order to improve the target gene specificity of designed probes. This approach is particularly applicable to organisms with a wealth of EST sequences but unfinished genome

    Post-supereruption recovery at Toba Caldera

    Get PDF
    Large calderas, or supervolcanoes, are sites of the most catastrophic and hazardous events on Earth, yet the temporal details of post-supereruption activity, or resurgence, remain largely unknown, limiting our ability to understand how supervolcanoes work and address their hazards. Toba Caldera, Indonesia, caused the greatest volcanic catastrophe of the last 100 kyr, climactically erupting ~74 ka. Since the supereruption, Toba has been in a state of resurgence but its magmatic and uplift history has remained unclear. Here we reveal that new 14 C, zircon U-Th crystallization and (U-Th)/He ages show resurgence commenced at 69.7±4.5 ka and continued until at least ~2.7 ka, progressing westward across the caldera, as reflected by post-caldera effusive lava eruptions and uplifted lake sediment. The major stratovolcano north of Toba, Sinabung, shows strong geochemical kinship with Toba, and zircons from recent eruption products suggest Toba's climactic magma reservoir extends beneath Sinabung and is being tapped during eruptions
    • …
    corecore