11 research outputs found

    Pharmacologically Induced Hypogonadism and Sexual Function in Healthy Young Women and Men

    No full text
    Studies fail to find uniform effects of age-related or induced hypogonadism on human sexual function. We examined the effects of induced hypogonadism on sexual function in healthy men and women and attempted to identify predictors of the sexual response to induced hypogonadism or hormone addback. The study design used was a double-blind, controlled, crossover (self-as-own control). The study setting was an ambulatory care clinic in a research hospital, and the participants were 20 men (average ± SD age = 28.5 ± 6.2 years) and 20 women (average ± SD age = 33.5 ± 8.7 years), all healthy and with no history of psychiatric illness. A multidimensional scale assessing several domains of sexual function was the main outcome measure. Participants of the study received depot leuprolide acetate (Lupron) every 4 weeks for 3 months (men) or 5 months (women). After the first month of Lupron alone, men received (in addition to Lupron) testosterone enanthate (200 mg intramuscularly) or placebo every 2 weeks for 1 month each. Women received Lupron alone for 2 months, and then, in addition to Lupron, they received estradiol and progesterone for 5 weeks each. The results of the study: in women, hypogonadism resulted in a significant decrease in global measures of sexual functioning, principally reflecting a significant decrease in the reported quality of orgasm. In men, hypogonadism resulted in significant reductions in all measured domains of sexual function. Testosterone restored sexual functioning scores in men to those seen at baseline, whereas neither estradiol nor progesterone significantly improved the reduced sexual functioning associated with hypogonadism in women. Induced hypogonadism decreased sexual function in a similar number of men and women. No predictors of response were identified except for levels of sexual function at baseline. In conclusion, our data do not support a simple deficiency model for the role of gonadal steroids in human sexual function; moreover, while variable, the role of testosterone in sexual function in men is more apparent than that of estradiol or progesterone in women

    Vibrational communication networks: eavesdropping and biotic noise

    No full text
    In nature, communication predominantly occurs in a group of several conspecific and/or heterospecific individuals within signaling and receiving range of each other, i.e., in a network environment. Vibrational communication in the context of sexual behavior has been, in the past, usually considered as a private communication channel, free of potential competitors and eavesdropping predators or parasitoids and consequently only rarely studied outside an emitter–receiver dyad. We provide an overview of work related to vibrational communication in the presence of (a) environmental (abiotic) noise, (b) other conspecific and/or heterospecific signalers (biotic noise), (c) rivals and (d) exploiters (predators and parasitoids) The evidence gathered in the last few years shows that arthropods relying on substrate-borne vibrations communicate within a rich and complex vibrational world and reveals diverse interactions and mechanisms. Considering vibrational communication from a network perspective may allow us in the future to identify sources of selection pressures that cannot be recognized in a communication dya

    Vibrational communication networks

    Full text link
    In nature, communication predominantly occurs in a group of several conspecific and/or heterospecific individuals within signaling and receiving range of each other, i.e., in a network environment. Vibrational communication in the context of sexual behavior has been, in the past, usually considered as a private communication channel, free of potential competitors and eavesdropping predators or parasitoids and consequently only rarely studied outside an emitter–receiver dyad. We provide an overview of work related to vibrational communication in the presence of (a) environmental (abiotic) noise, (b) other conspecific and/or heterospecific signalers (biotic noise), (c) rivals and (d) exploiters (predators and parasitoids). The evidence gathered in the last few years shows that arthropods relying on substrate-borne vibrations communicate within a rich and complex vibrational world and reveals diverse interactions and mechanisms. Considering vibrational communication from a network perspective may allow us in the future to identify sources of selection pressures that cannot be recognized in a communication dyad

    Anwendungen des Stahl- und Spannbetons

    No full text

    Risks and benefits of testosterone therapy in older men

    No full text

    Eigenschaften und Anwendungen

    No full text
    corecore