34 research outputs found

    METANNOGEN: compiling features of biochemical reactions needed for the reconstruction of metabolic networks

    Get PDF
    BACKGROUND: One central goal of computational systems biology is the mathematical modelling of complex metabolic reaction networks. The first and most time-consuming step in the development of such models consists in the stoichiometric reconstruction of the network, i. e. compilation of all metabolites, reactions and transport processes relevant to the considered network and their assignment to the various cellular compartments. Therefore an information system is required to collect and manage data from different databases and scientific literature in order to generate a metabolic network of biochemical reactions that can be subjected to further computational analyses. RESULTS: The computer program METANNOGEN facilitates the reconstruction of metabolic networks. It uses the well-known database of biochemical reactions KEGG of biochemical reactions as primary information source from which biochemical reactions relevant to the considered network can be selected, edited and stored in a separate, user-defined database. Reactions not contained in KEGG can be entered manually into the system. To aid the decision whether or not a reaction selected from KEGG belongs to the considered network METANNOGEN contains information of SWISSPROT and ENSEMBL and provides Web links to a number of important information sources like METACYC, BRENDA, NIST, and REACTOME. If a reaction is reported to occur in more than one cellular compartment, a corresponding number of reactions is generated each referring to one specific compartment. Transport processes of metabolites are entered like chemical reactions where reactants and products have different compartment attributes. The list of compartmentalized biochemical reactions and membrane transport processes compiled by means of METANNOGEN can be exported as an SBML file for further computational analysis. METANNOGEN is highly customizable with respect to the content of the SBML output file, additional data-fields, the graphical input form, highlighting of project specific search terms and dynamically generated Web-links. CONCLUSION: METANNOGEN is a flexible tool to manage information for the design of metabolic networks. The program requires Java Runtime Environment 1.4 or higher and about 100 MB of free RAM and about 200 MB of free HD space. It does not require installation and can be directly Java-webstarted from

    FASIMU: flexible software for flux-balance computation series in large metabolic networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flux-balance analysis based on linear optimization is widely used to compute metabolic fluxes in large metabolic networks and gains increasingly importance in network curation and structural analysis. Thus, a computational tool flexible enough to realize a wide variety of FBA algorithms and able to handle batch series of flux-balance optimizations is of great benefit.</p> <p>Results</p> <p>We present FASIMU, a command line oriented software for the computation of flux distributions using a variety of the most common FBA algorithms, including the first available implementation of (i) weighted flux minimization, (ii) fitness maximization for partially inhibited enzymes, and (iii) of the concentration-based thermodynamic feasibility constraint. It allows batch computation with varying objectives and constraints suited for network pruning, leak analysis, flux-variability analysis, and systematic probing of metabolic objectives for network curation. Input and output supports SBML. FASIMU can work with free (lp_solve and GLPK) or commercial solvers (CPLEX, LINDO). A new plugin (faBiNA) for BiNA allows to conveniently visualize calculated flux distributions. The platform-independent program is an open-source project, freely available under GNU public license at <url>http://www.bioinformatics.org/fasimu</url> including manual, tutorial, and plugins.</p> <p>Conclusions</p> <p>We present a flux-balance optimization program whose main merits are the implementation of thermodynamics as a constraint, batch series of computations, free availability of sources, choice on various external solvers, and the flexibility on metabolic objectives and constraints.</p

    Lung cancer risk among German male uranium miners: a cohort study, 1946–1998

    Get PDF
    From 1946 to 1990 extensive uranium mining was conducted in the southern parts of the former German Democratic Republic. The overall workforce included several 100 000 individuals. A cohort of 59 001 former male employees of the Wismut Company was established, forming a large retrospective uranium miners' cohort for the time period 1946–1998. Mean duration of follow-up was 30.5 years with a total of 1 801 630 person-years. Loss to follow-up was low at 5.3%. Of the workers, 16 598 (28.1%) died during the study period. Based on 2388 lung cancer deaths, the radon-related lung cancer risk is evaluated. The excess relative risk (ERR) per working level month (WLM) was estimated as 0.21% (95% CI: 0.18–0.24). It was dependent on time since exposure and on attained age. The highest ERR/WLM was observed 15–24 years after exposure and in the youngest age group (<55 years of age). While a strong inverse exposure-rate effect was detected for high exposures, no significant association was detected at exposures below 100 WLM. Excess relative risk /WLM was not modified by duration of exposure. The results would indicate the need to re-estimate the effects of risk modifying factors in current risk models as duration of exposure did not modify the ERR/WLM and there was only a modest decline of ERR/WLM with increasing time since exposure

    Nuclear Entry of Activated MAPK Is Restricted in Primary Ovarian and Mammary Epithelial Cells

    Get PDF
    The MAPK/ERK1/2 serine kinases are primary mediators of the Ras mitogenic signaling pathway. Phosphorylation by MEK activates MAPK/ERK in the cytoplasm, and phospho-ERK is thought to enter the nucleus readily to modulate transcription.Here, however, we observe that in primary cultures of breast and ovarian epithelial cells, phosphorylation and activation of ERK1/2 are disassociated from nuclear translocalization and transcription of downstream targets, such as c-Fos, suggesting that nuclear translocation is limited in primary cells. Accordingly, in import assays in vitro, primary cells showed a lower import activity for ERK1/2 than cancer cells, in which activated MAPK readily translocated into the nucleus and activated c-Fos expression. Primary cells express lower levels of nuclear pore complex proteins and the nuclear transport factors, importin B1 and importin 7, which may explain the limiting ERK1/2 import found in primary cells. Additionally, reduction in expression of nucleoporin 153 by siRNA targeting reduced ERK1/2 nuclear activity in cancer cells.ERK1/2 activation is dissociated from nuclear entry, which is a rate limiting step in primary cells and in vivo, and the restriction of nuclear entry is disrupted in transformed cells by the increased expression of nuclear pores and/or nuclear transport factors

    Forest-Stream Linkages: Effects of Terrestrial Invertebrate Input and Light on Diet and Growth of Brown Trout (Salmo trutta) in a Boreal Forest Stream

    Get PDF
    Subsidies of energy and material from the riparian zone have large impacts on recipient stream habitats. Human-induced changes, such as deforestation, may profoundly affect these pathways. However, the strength of individual factors on stream ecosystems is poorly understood since the factors involved often interact in complex ways. We isolated two of these factors, manipulating the flux of terrestrial input and the intensity of light in a 2×2 factorial design, where we followed the growth and diet of two size-classes of brown trout (Salmo trutta) and the development of periphyton, grazer macroinvertebrates, terrestrial invertebrate inputs, and drift in twelve 20 m long enclosed stream reaches in a five-month-long experiment in a boreal coniferous forest stream. We found that light intensity, which was artificially increased 2.5 times above ambient levels, had an effect on grazer density, but no detectable effect on chlorophyll a biomass. We also found a seasonal effect on the amount of drift and that the reduction of terrestrial prey input, accomplished by covering enclosures with transparent plastic, had a negative impact on the amount of terrestrial invertebrates in the drift. Further, trout growth was strongly seasonal and followed the same pattern as drift biomass, and the reduction of terrestrial prey input had a negative effect on trout growth. Diet analysis was consistent with growth differences, showing that trout in open enclosures consumed relatively more terrestrial prey in summer than trout living in covered enclosures. We also predicted ontogenetic differences in the diet and growth of old and young trout, where we expected old fish to be more affected by the terrestrial prey reduction, but we found little evidence of ontogenetic differences. Overall, our results showed that reduced terrestrial prey inputs, as would be expected from forest harvesting, shaped differences in the growth and diet of the top predator, brown trout

    The regulatory mechanisms of NG2/CSPG4 expression

    Get PDF
    Neuron-glial antigen 2 (NG2), also known as chondroitin sulphate proteoglycan 4 (CSPG4), is a surface type I transmembrane core proteoglycan that is crucially involved in cell survival, migration and angiogenesis. NG2 is frequently used as a marker for the identification and characterization of certain cell types, but little is known about the mechanisms regulating its expression. In this review, we provide evidence that the regulation of NG2 expression underlies inflammation and hypoxia and is mediated by methyltransferases, transcription factors, including Sp1, paired box (Pax) 3 and Egr-1, and the microRNA miR129-2. These regulatory factors crucially determine NG2-mediated cellular processes such as glial scar formation in the central nervous system (CNS) or tumor growth and metastasis. Therefore, they are potential targets for the establishment of novel NG2-based therapeutic strategies in the treatment of CNS injuries, cancer and other conditions of these types

    Defining novel functions for cerebrospinal fluid in ALS pathophysiology

    Get PDF
    Despite the considerable progress made towards understanding ALS pathophysiology, several key features of ALS remain unexplained, from its aetiology to its epidemiological aspects. The glymphatic system, which has recently been recognised as a major clearance pathway for the brain, has received considerable attention in several neurological conditions, particularly Alzheimer's disease. Its significance in ALS has, however, been little addressed. This perspective article therefore aims to assess the possibility of CSF contribution in ALS by considering various lines of evidence, including the abnormal composition of ALS-CSF, its toxicity and the evidence for impaired CSF dynamics in ALS patients. We also describe a potential role for CSF circulation in determining disease spread as well as the importance of CSF dynamics in ALS neurotherapeutics. We propose that a CSF model could potentially offer additional avenues to explore currently unexplained features of ALS, ultimately leading to new treatment options for people with ALS.</p

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Stapesplastikrevisionschirurgie - Indikation und Befunde

    No full text
    corecore