32 research outputs found

    A new bed elevation model for the Weddell Sea sector of the West Antarctic Ice Sheet

    Get PDF
    We present a new bed elevation digital elevation model (DEM), with a 1 km spatial resolution, for the Weddell Sea sector of the West Antarctic Ice Sheet. The DEM has a total area of ~125,000 km2 covering the Institute, Möller and Foundation ice streams and the Bungenstock ice rise. In comparison with the Bedmap2 product, our DEM includes several new aerogeophysical datasets acquired by the Center for Remote Sensing of Ice Sheets (CReSIS) through the NASA Operation IceBridge (OIB) program in 2012, 2014 and 2016. We also update bed elevation information from the single largest existing dataset in the region, collected by the British Antarctic Survey (BAS) Polarimetric Airborne Survey Instrument (PASIN) in 2010-11, as BEDMAP2 included only relatively crude ice thickness measurements determined in the field for quality control purposes. This have resulted in the deep parts of the topography not being visible in the fieldwork non-SAR processed radargrams. While the gross form of the new DEM is similar to Bedmap2, there are some notable differences. For example, the position and size of a deep trough (~ 2 km below sea level) between the ice sheet interior and the grounding line of Foundation ice stream has been redefined. From the revised DEM, we are able to better derive the expected routing of basal water at the ice-bed interface, and by comparison with that calculated using Bedmap2 we are able to assess regions where hydraulic flow is sensitive to change. Given the sensitivity of this sector of the ice sheet to ocean-induced melting at the grounding line, especially in light of improved definition of the Foundation ice stream trough, our revised DEM will be of value to ice-sheet modelling in efforts to quantify future glaciological changes in the region, and therefore the potential impact on global sea level. The new 1 km bed elevation product of the Weddell Sea sector, West Antarctica can be found in the http://doi.org/10.5281/zenodo.1035488

    Evidence of an active volcanic heat source beneath the Pine Island Glacier

    Get PDF
    Tectonic landforms reveal that the West Antarctic Ice Sheet (WAIS) lies atop a major volcanic rift system. However, identifying subglacial volcanism is challenging. Here we show geochemical evidence of a volcanic heat source upstream of the fast-melting Pine Island Ice Shelf, documented by seawater helium isotope ratios at the front of the Ice Shelf cavity. The localization of mantle helium to glacial meltwater reveals that volcanic heat induces melt beneath the grounded glacier and feeds the subglacial hydrological network crossing the grounding line. The observed transport of mantle helium out of the Ice Shelf cavity indicates that volcanic heat is supplied to the grounded glacier at a rate of ~ 2500 ± 1700 MW, which is ca. half as large as the active Grimsvötn volcano on Iceland. Our finding of a substantial volcanic heat source beneath a major WAIS glacier highlights the need to understand subglacial volcanism, its hydrologic interaction with the marine margins, and its potential role in the future stability of the WAIS
    corecore