90 research outputs found

    Competitive Binding Between Id1 and E2F1 to Cdc20 Regulates E2F1 Degradation and Thymidylate Synthase Expression to Promote Esophageal Cancer Chemoresistance

    Get PDF
    Purpose: Chemoresistance is a major obstacle in cancer therapy. We found that fluorouracil (5-FU)-resistant esophageal squamous cell carcinoma cell lines, established through exposure to increasing concentrations of 5-FU, showed upregulation of Id1, IGF2, and E2F1. We hypothesized that these genes may play an important role in cancer chemoresistance. Experimental Design: In vitro and in vivo functional assays were performed to study the effects of Id1–E2F1–IGF2 signaling in chemoresistance. Quantitative real-time PCR, Western blotting, immunoprecipitation, chromatin immunoprecipitation, and dual-luciferase reporter assays were used to investigate the molecular mechanisms by which Id1 regulates E2F1 and by which E2F1 regulates IGF2. Clinical specimens, tumor tissue microarray, and Gene Expression Omnibus datasets were used to analyze the correlations between gene expressions and the relationships between expression profiles and patient survival outcomes. Results: Id1 conferred 5-FU chemoresistance through E2F1-dependent induction of thymidylate synthase expression in esophageal cancer cells and tumor xenografts. Mechanistically, Id1 protects E2F1 protein from degradation and increases its expression by binding competitively to Cdc20, whereas E2F1 mediates Id1-induced upregulation of IGF2 by binding directly to the IGF2 promoter and activating its transcription. The expression level of E2F1 was positively correlated with that of Id1 and IGF2 in human cancers. More importantly, concurrent high expression of Id1 and IGF2 was associated with unfavorable patient survival in multiple cancer types. Conclusions: Our findings define an intricate E2F1-dependent mechanism by which Id1 increases thymidylate synthase and IGF2 expressions to promote cancer chemoresistance. The Id1–E2F1–IGF2 regulatory axis has important implications for cancer prognosis and treatment. ©2015 AACR.postprin

    Clinical and Molecular Characterization of Ataxia with Oculomotor Apraxia Patients In Saudi Arabia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autosomal recessive ataxias represent a group of clinically overlapping disorders. These include ataxia with oculomotor apraxia type1 (AOA1), ataxia with oculomotor apraxia type 2 (AOA2) and ataxia-telangiectasia-like disease (ATLD). Patients are mainly characterized by cerebellar ataxia and oculomotor apraxia. Although these forms are not quite distinctive phenotypically, different genes have been linked to these disorders. Mutations in the <it>APTX </it>gene were reported in AOA1 patients, mutations in <it>SETX </it>gene were reported in patients with AOA2 and mutations in <it>MRE11 </it>were identified in ATLD patients. In the present study we describe in detail the clinical features and results of genetic analysis of 9 patients from 4 Saudi families with ataxia and oculomotor apraxia.</p> <p>Methods</p> <p>This study was conducted in the period between 2005-2010 to clinically and molecularly characterize patients with AOA phenotype. Comprehensive sequencing of all coding exons of previously reported genes related to this disorder (<it>APTX</it>, <it>SETX </it>and <it>MRE11</it>).</p> <p>Results</p> <p>A novel nonsense truncating mutation c.6859 C > T, R2287X in <it>SETX </it>gene was identified in patients from one family with AOA2. The previously reported missense mutation W210C in <it>MRE11 </it>gene was identified in two families with autosomal recessive ataxia and oculomotor apraxia.</p> <p>Conclusion</p> <p>Mutations in <it>APTX </it>, <it>SETX </it>and <it>MRE11 </it>are common in patients with autosomal recessive ataxia and oculomotor apraxia. The results of the comprehensive screening of these genes in 4 Saudi families identified mutations in <it>SETX </it>and <it>MRE11 </it>genes but failed to identify mutations in <it>APTX </it>gene.</p

    The utility of pathway selective estrogen receptor ligands that inhibit nuclear factor-κB transcriptional activity in models of rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease that produces synovial proliferation and joint erosions. The pathologic lesions of RA are driven through the production of inflammatory mediators in the synovium mediated, in part, by the transcription factor NF-κB. We have identified a non-steroidal estrogen receptor ligand, WAY-169916, that selectively inhibits NF-κB transcriptional activity but is devoid of conventional estrogenic activity. The activity of WAY-169916 was monitored in two models of arthritis, the HLA-B27 transgenic rat and the Lewis rat adjuvant-induced model, after daily oral administration. In both models, a near complete reversal in hindpaw scores was observed as well as marked improvements in the histological scores. In the Lewis rat adjuvant model, WAY-169916 markedly suppresses the adjuvant induction of three serum acute phase proteins: haptoglobin, α1-acid glycoprotein (α1-AGP), and C-reactive protein (CRP). Gene expression experiments also demonstrate a global suppression of adjuvant-induced gene expression in the spleen, liver, and popliteal lymph nodes. Finally, WAY-169916 was effective in suppressing tumor necrosis factor-α-mediated inflammatory gene expression in fibroblast-like synoviocytes isolated from patients with RA. Together, these data suggest the utility of WAY-169916, and other compounds in its class, in treating RA through global suppression of inflammation via selective blockade of NF-κB transcriptional activity

    Why can pulmonary vein stenoses created by radiofrequency catheter ablation worsen during and after follow-up ? A potential explanation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radiofrequency catheter ablation of excitation foci inside pulmonary veins (PV) generates stenoses that can become quite severe during or after the follow-up period. Since severe PV stenoses have most often disastrous consequences, it would be important to know the underlying mechanism of this temporal evolution. The present study proposes a potential explanation based on mechanical considerations.</p> <p>Methods</p> <p>we have used a mathematical-physical model to examine the cyclic increase in axial wall stress induced in the proximal (= upstream), non-stenosed segment of a stenosed pulmonary vein during the forward flow phases. In a representative example, the value of this increase at peak flow was calculated for diameter stenoses (DS) ranging from 1 to 99%.</p> <p>Results</p> <p>The increase becomes appreciable at a DS of roughly 30% and rise then strongly with further increasing DS value. At high DS values (e.g. > 90%) the increase is approximately twice the value of the axial stress present in the PV during the zero-flow phase.</p> <p>Conclusion</p> <p>Since abnormal wall stresses are known to induce damages and abnormal biological processes (e.g., endothelium tears, elastic membrane fragmentations, matrix secretion, myofibroblast generation, etc) in the vessel wall, it seems plausible that the supplementary axial stress experienced cyclically by the stenotic and the proximal segments of the PV is responsible for the often observed progressive reduction of the vessel lumen after healing of the ablation injury. In the light of this model, the only potentially effective therapy in these cases would be to reduce the DS as strongly as possible. This implies most probably stenting or surgery.</p

    A Functional Variant in MicroRNA-146a Promoter Modulates Its Expression and Confers Disease Risk for Systemic Lupus Erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE) is a complex autoimmune disease with a strong genetic predisposition, characterized by an upregulated type I interferon pathway. MicroRNAs are important regulators of immune homeostasis, and aberrant microRNA expression has been demonstrated in patients with autoimmune diseases. We recently identified miR-146a as a negative regulator of the interferon pathway and linked the abnormal activation of this pathway to the underexpression of miR-146a in SLE patients. To explore why the expression of miR-146a is reduced in SLE patients, we conducted short parallel sequencing of potentially regulatory regions of miR-146a and identified a novel genetic variant (rs57095329) in the promoter region exhibiting evidence for association with SLE that was replicated independently in 7,182 Asians (Pmeta = 2.74×10−8, odds ratio = 1.29 [1.18–1.40]). The risk-associated G allele was linked to reduced expression of miR-146a in the peripheral blood leukocytes of the controls. Combined functional assays showed that the risk-associated G allele reduced the protein-binding affinity and activity of the promoter compared with those of the promoter containing the protective A allele. Transcription factor Ets-1, encoded by the lupus-susceptibility gene ETS1, identified in recent genome-wide association studies, binds near this variant. The manipulation of Ets-1 levels strongly affected miR-146a promoter activity in vitro; and the knockdown of Ets-1, mimicking its reduced expression in SLE, directly impaired the induction of miR-146a. We also observed additive effects of the risk alleles of miR-146a and ETS1. Our data identified and confirmed an association between a functional promoter variant of miR-146a and SLE. This risk allele had decreased binding to transcription factor Ets-1, contributing to reduced levels of miR-146a in SLE patients

    Recent publications from the Alzheimer's Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials

    Get PDF
    INTRODUCTION: The Alzheimer's Disease Neuroimaging Initiative (ADNI) has continued development and standardization of methodologies for biomarkers and has provided an increased depth and breadth of data available to qualified researchers. This review summarizes the over 400 publications using ADNI data during 2014 and 2015. METHODS: We used standard searches to find publications using ADNI data. RESULTS: (1) Structural and functional changes, including subtle changes to hippocampal shape and texture, atrophy in areas outside of hippocampus, and disruption to functional networks, are detectable in presymptomatic subjects before hippocampal atrophy; (2) In subjects with abnormal β-amyloid deposition (Aβ+), biomarkers become abnormal in the order predicted by the amyloid cascade hypothesis; (3) Cognitive decline is more closely linked to tau than Aβ deposition; (4) Cerebrovascular risk factors may interact with Aβ to increase white-matter (WM) abnormalities which may accelerate Alzheimer's disease (AD) progression in conjunction with tau abnormalities; (5) Different patterns of atrophy are associated with impairment of memory and executive function and may underlie psychiatric symptoms; (6) Structural, functional, and metabolic network connectivities are disrupted as AD progresses. Models of prion-like spreading of Aβ pathology along WM tracts predict known patterns of cortical Aβ deposition and declines in glucose metabolism; (7) New AD risk and protective gene loci have been identified using biologically informed approaches; (8) Cognitively normal and mild cognitive impairment (MCI) subjects are heterogeneous and include groups typified not only by "classic" AD pathology but also by normal biomarkers, accelerated decline, and suspected non-Alzheimer's pathology; (9) Selection of subjects at risk of imminent decline on the basis of one or more pathologies improves the power of clinical trials; (10) Sensitivity of cognitive outcome measures to early changes in cognition has been improved and surrogate outcome measures using longitudinal structural magnetic resonance imaging may further reduce clinical trial cost and duration; (11) Advances in machine learning techniques such as neural networks have improved diagnostic and prognostic accuracy especially in challenges involving MCI subjects; and (12) Network connectivity measures and genetic variants show promise in multimodal classification and some classifiers using single modalities are rivaling multimodal classifiers. DISCUSSION: Taken together, these studies fundamentally deepen our understanding of AD progression and its underlying genetic basis, which in turn informs and improves clinical trial desig

    Targeting the Wolbachia Cell Division Protein FtsZ as a New Approach for Antifilarial Therapy

    Get PDF
    Filarial nematode parasites are responsible for a number of devastating diseases in humans and animals. These include lymphatic filariasis and onchocerciasis that afflict 150 million people in the tropics and threaten the health of over one billion. The parasites possess intracellular bacteria, Wolbachia, which are needed for worm survival. Clearance of these bacteria with certain antibiotics leads to parasite death. These findings have pioneered the approach of using antibiotics to treat and control filarial infections. In the present study, we have investigated the cell division process in Wolbachia for new drug target discovery. We have identified the essential cell division protein FtsZ, which has a GTPase activity, as an attractive Wolbachia drug target. We describe the molecular characterization and catalytic properties of the enzyme and demonstrate that the GTPase activity is inhibited by the natural product, berberine, and small molecule inhibitors identified from a high-throughput screen. We also found that berberine was effective in reducing motility and reproduction in B. malayi parasites in vitro. Our results should facilitate the discovery of selective inhibitors of FtsZ as a novel antibiotic approach for controlling filarial infection

    Defining the Role of the MHC in Autoimmunity: A Review and Pooled Analysis

    Get PDF
    The major histocompatibility complex (MHC) is one of the most extensively studied regions in the human genome because of the association of variants at this locus with autoimmune, infectious, and inflammatory diseases. However, identification of causal variants within the MHC for the majority of these diseases has remained difficult due to the great variability and extensive linkage disequilibrium (LD) that exists among alleles throughout this locus, coupled with inadequate study design whereby only a limited subset of about 20 from a total of approximately 250 genes have been studied in small cohorts of predominantly European origin. We have performed a review and pooled analysis of the past 30 years of research on the role of the MHC in six genetically complex disease traits – multiple sclerosis (MS), type 1 diabetes (T1D), systemic lupus erythematosus (SLE), ulcerative colitis (UC), Crohn's disease (CD), and rheumatoid arthritis (RA) – in order to consolidate and evaluate the current literature regarding MHC genetics in these common autoimmune and inflammatory diseases. We corroborate established MHC disease associations and identify predisposing variants that previously have not been appreciated. Furthermore, we find a number of interesting commonalities and differences across diseases that implicate both general and disease-specific pathogenetic mechanisms in autoimmunity
    corecore