63 research outputs found

    Comprehensive study on Escherichia coli genomic expression : does position really matter?

    Get PDF
    As a biorefinery platform host, Escherichia coli has been used extensively to produce metabolites of commercial interest. Integration of foreign DNA onto the bacterial genome allows for stable expression overcoming the need for plasmid expression and its associated instability. Despite the development of numerous tools and genome editing technologies, the question of where to incorporate a synthetic pathway remains unanswered. To address this issue, we studied the genomic expression in E. coli and linked it not only to 26 rationally selected genomic locations, but also to the gene direction in relation to the DNA replication fork, to the carbon and nitrogen source, to DNA folding and supercoiling, and to metabolic burden. To enable these experiments, we have designed a fluorescent expression cassette to eliminate specific local effects on gene expression. Overall it can be concluded that although the expression range obtained by changing the genomic location of a pathway is small compared to the range typically seen in promoter-RBS libraries, the effect of culture medium, environmental stress and metabolic burden can be substantial. The characterization of multiple effects on genomic expression, and the associated libraries of well-characterized strains, will only stimulate and improve the creation of stable production hosts fit for industrial settings

    Towards implementation of robust monitoring technologies alongside freshwater improvement policy in Aotearoa New Zealand

    Get PDF
    International studies point out that some freshwater policy objectives are not achieved. This study describes that this is in part caused by shortcomings that include: the lack of targeted monitoring schemes to measure impact; a too small range of specific technologies rather than a wider suite of integrated multiple technologies; a too tight focus on sub-sets of stakeholders instead of the involvement of the wider range of end users; and poor trust building and technology explanations to end users. As an example, the New Zealand government is addressing widespread concern over the deterioration of the national freshwater resource by supporting a diverse portfolio of land and riparian management actions. Efforts to assess the effectiveness of these interventions and establish an evidence-based framework for future policies are however limited by the existing regional-scale freshwater monitoring infrastructure. Such hydrometric networks were established largely to assess the broader-scale regional ‘state’ of the environment and are generally out-of-phase with freshwater improvement actions that are implemented more typically at edge-of-field, farm or sub-catchment scales. Recent and rapid evolution in sensor technologies have created new opportunities to deliver information tuned to the appropriate parameters and frequencies needed to evaluate improvement actions. Despite this, the necessary transformative change in freshwater monitoring has yet to gather pace. In this study we explore barriers and solutions with the objective to better understand what is needed for successful integration of innovative monitoring technologies in a transitional environmental policy setting, using recent New Zealand policy directives as a case study. We use expert surveys and scenario testing to explore barriers to adoption to more robust and comprehensive monitoring required to establish the success, or otherwise, of freshwater improvement actions. This process reveals that rather than further innovations in technology, change in the practice of environmental monitoring is limited instead by the development of defensible and accepted guidelines on the application and effective deployment of existing sensors and methods. We demonstrate that improved knowledge exchange between engineers, scientists and practitioners can be addressed and propose a new decision support and communication tool to enable the selection of monitoring technologies and solutions fit-for-purpose to evaluate freshwater improvement outcomes on multiple scales involving multiple stakeholders

    Physiological modeling, tight glycemic control, and the ICU clinician: what are models and how can they affect practice?

    Get PDF
    Critically ill patients are highly variable in their response to care and treatment. This variability and the search for improved outcomes have led to a significant increase in the use of protocolized care to reduce variability in care. However, protocolized care does not address the variability of outcome due to inter- and intra-patient variability, both in physiological state, and the response to disease and treatment. This lack of patient-specificity defines the opportunity for patient-specific approaches to diagnosis, care, and patient management, which are complementary to, and fit within, protocolized approaches

    Tick-borne encephalitis virus in dogs - is this an issue?

    Get PDF
    The last review on Tick-borne encephalitis (TBE) in dogs was published almost ten years ago. Since then, this zoonotic tick-borne arbovirus has been geographically spreading and emerging in many regions in Eurasia and continues to do so. Dogs become readily infected with TBE virus but they are accidental hosts not capable to further spread the virus. They seroconvert upon infection but they seem to be much more resistant to the clinical disease than humans. Apart from their use as sentinels in endemic areas, however, an increasing number of case reports appeared during the last decade thus mirroring the rising public health concerns. Owing to the increased mobility of people travelling to endemic areas with their companion dogs, this consequently leads to problems in recognizing and diagnosing this severe infection in a yet non-endemic area, simply because the veterinarians are not considering TBE. This situation warrants an update on the epidemiology, clinical presentation and possible preventions of TBE in the dog

    Platform session

    Get PDF

    Fluid-structure interaction modeling: first applications at cnes

    No full text
    This paper deals with the numerical methodologies used at CNES DLA to set up Fluid-Structure Interaction (FSI) calculations. The numerical strategy developed is based on the code coupling which allows the communication between two specific codes. In fact, to model launcher's components, CNES uses various specialized codes (for thermal, mechanical, fluids, combustion applications, etc.), to seek individual solutions of the highly complex problem. Then, a third code allowing communication between computational fluid dynamics (CFD) and finite element analysis (FEA) (interpolations between different meshes) and exchanging shared variables (mainly, pressures and displacements) is required for FSI problems. One of the major application fields identified concerns the solid propulsion. Two problems are investigated to perform coupled calculations with increasing complexity. The first one is about the Solid Rocket Motor (SRM) ignition. This transient phase can be decomposed by successive steady-states with step-by-step increasing of internal motor pressure. This allows performing unidirectional coupling with both a script developed at CNES and the MpCCI software. The second one concerns thrust oscillations of SRM. A bidirectional approach is used to simulate the behavior of a flexible obstacle, made of elastomer, protruding in a cold gas flow of an experimental test bench developed to reproduce oscillating pressure phenomena at a reduced scale
    corecore