62 research outputs found

    Constituent quark models and pentaquark baryons

    Full text link
    We discuss certain general features of the pentaquark picture for the theta, its 10bar_F partner, Xi_{3/2}, and possible heavy quark analogues. Models employing spin-dependent interactions based on either effective Goldstone boson exchange or effective color magnetic exchange are also used to shed light on possible corrections to the Jaffe-Wilczek and Karliner-Lipkin scenarios. Some model-dependent features of the pentaquark picture (splitting patterns and relative decay couplings) are also discussed in the context of these models.Comment: 4 pages. Prepared for the Proceedings of the 1st APS Topical Group on Hadronic Physics (GHP) meeting, FNAL, Oct. 24-26, 200

    Baryonic Effect on chi_cJ Suppression in Au+Au Collisions at RHIC Energies

    Get PDF
    We predict that initially produced chi_cJ mesons at low transverse momentum in the central rapidity region are almost dissociated by nucleons and antinucleons in hadronic matter produced in central Au+Au collisions at RHIC energies sqrt {s_{NN}}= 130 and 200 GeV. In calculations the nucleon and antinucleon distributions in hadronic matter are results of evolution from their freeze-out distributions which well fit the experimental p_T spectra of proton and antiproton. Any measured chi_cJ mesons at low p_T are generated from deconfined matter and give an explicit proof of regeneration mechanism (recombination mechanism).Comment: 10 pages, 3 figures, Latex, a discussion added to the referenc

    Pentaquarks: review of the experimental evidence

    Full text link
    Pentaquarks, namely baryons made by 4 quarks and one antiquark have been predicted and searched for since several decades without success. Theoretical and experimental advances in the last 2 years led to the observation of a number of pentaquark candidates. We review the experimental evidence for pentaquarks as well as their non-observations by some experiments, and discuss to which extend these sometimes contradicting informations may lead to a consistent picture.Comment: Contribution to the International Conference on 'Strangeness in Quark Matter', 15-21 Sept. 2004, Cape Tawn, South Afric

    Quarkonia production with the Hera-B experiment

    Full text link
    Measurements of the dependence of the J/Psi production cross section on its kinematic variables as well as on the target atomic numbers for 920 GeV/c protons incident on different targets have been made with the Hera-B detector. The large collected di-lepton sample allows to study the production ratio of Psi(2S) to J/Psi and of Chic to J/Psi . We also report on measurements of the b-bbar and Upsilon production cross section.Comment: 9 pages, 11 figure

    Scintillation counter with MRS APD light readout

    Full text link
    START, a high-efficiency and low-noise scintillation detector for ionizing particles, was developed for the purpose of creating a high-granular system for triggering cosmic muons. Scintillation light in START is detected by MRS APDs (Avalanche Photo-Diodes with Metal-Resistance-Semiconductor structure), operated in the Geiger mode, which have 1 mm^2 sensitive areas. START is assembled from a 15 x 15 x 1 cm^3 scintillating plastic plate, two MRS APDs and two pieces of wavelength-shifting optical fiber stacked in circular coils inside the plastic. The front-end electronic card is mounted directly on the detector. Tests with START have confirmed its operational consistency, over 99% efficiency of MIP registration and good homogeneity. START demonstrates a low intrinsic noise of about 10^{-2} Hz. If these detectors are to be mass-produced, the cost of a mosaic array of STARTs is estimated at a moderate level of 2-3 kUSD/m^2.Comment: 6 pages, 5 figure

    Light-Front Approach for Pentaquark Strong Decays

    Full text link
    Assuming the two diquark structure for the pentaquark state as advocated in the Jaffe-Wilczek model, we study the strong decays of light and heavy parity-even pentaquark states using the light-front quark model in conjunction with the spectator approximation. The narrowness of the Theta width is ascribed to the p-wave configuration of the diquark pair. Taking the Theta width as a benchmark, we estimate the rates of the strong decays Xi_{3/2}-- to Xi- pi-, Sigma- K-, Sigma_{5c}0 to D_s- p, D_{s0}*- p and Xi_{5c}0 to D_s- Sigma+, D_{s0}^{*-} Sigma+ with Sigma_{5c} Xi_{5c} being antisextet charmed pentaquarks and D_{s0}* a scalar strange charmed meson. The ratio of Gamma(P_c to Baryon D_{s0}*)/Gamma(P_c to Baryon D_s) is very useful for verifying the parity of the antisextet charmed pentaquark P_c. It is expected to be of order unity for an even parity P_c and much less than one for an odd parity pentaquark.Comment: 24 pages, 2 figure

    Sensitivity of LHC experiments to exotic highly ionising particles

    Full text link
    The experiments at the Large Hadron Collider (LHC) are able to discover or set limits on the production of exotic particles with TeV-scale masses possessing values of electric and/or magnetic charge such that they behave as highly ionising particles (HIPs). In this paper the sensitivity of the LHC experiments to HIP production is discussed in detail. It is shown that a number of different detection methods are required to investigate as fully as possible the charge-mass range. These include direct detection as the HIPs pass through either passive or active detectors and, in the case of magnetically charged objects, the so-called induction method with which magnetic monopoles which stop in accelerator and detector material could be observed. The benefit of using complementary approaches to HIP detection is discussed.Comment: 20 pages, 52 figure

    Cold nuclear effects on heavy flavours (a review)

    Full text link
    Before wondering about the quark-gluon plasma (QGP), one has to take into account various cold (normal) nuclear matter effects, that can be probed through p+A like collisions. This article aims at reviewing the current results (and understanding) of these effects on heavy quarks and quarkonia production.Comment: 8 pages, 6x2 figures, SQM08 proceedings, version accepted by J.Phys.G. Figure 4 left and 5 right remad

    Working Group Report on the Structure of the Proton

    Get PDF
    We summarize the developments on the structure of the proton that were studied at the Workshop on "HERA Physics" that was held in Durham in September 1995. We survey the latest structure function data; we overview the QCD interpretations of the measurements of the structure functions and of final state processes; we discuss charm production and the spin properties of the proton.Comment: 45 pages, latex file using epsfig and ioplppt macros. Figures included, but full resolution figure files and postscript file of the whole paper are available via anonymous ftp at ftp://cpt1.dur.ac.uk/pub/preprints/dtp96/dtp962

    Improved Constraints on the 21 cm EoR Power Spectrum and the X-Ray Heating of the IGM with HERA Phase I Observations

    Full text link
    We report the most sensitive upper limits to date on the 21 cm epoch of reionization power spectrum using 94 nights of observing with Phase I of the Hydrogen Epoch of Reionization Array (HERA). Using similar analysis techniques as in previously reported limits (HERA Collaboration 2022a), we find at 95% confidence that Δ2(k=0.34\Delta^2(k = 0.34 hh Mpc1^{-1}) 457\leq 457 mK2^2 at z=7.9z = 7.9 and that Δ2(k=0.36\Delta^2 (k = 0.36 hh Mpc1)3,496^{-1}) \leq 3,496 mK2^2 at z=10.4z = 10.4, an improvement by a factor of 2.1 and 2.6 respectively. These limits are mostly consistent with thermal noise over a wide range of kk after our data quality cuts, despite performing a relatively conservative analysis designed to minimize signal loss. Our results are validated with both statistical tests on the data and end-to-end pipeline simulations. We also report updated constraints on the astrophysics of reionization and the cosmic dawn. Using multiple independent modeling and inference techniques previously employed by HERA Collaboration (2022b), we find that the intergalactic medium must have been heated above the adiabatic cooling limit at least as early as z=10.4z = 10.4, ruling out a broad set of so-called "cold reionization" scenarios. If this heating is due to high-mass X-ray binaries during the cosmic dawn, as is generally believed, our result's 99% credible interval excludes the local relationship between soft X-ray luminosity and star formation and thus requires heating driven by evolved low-metallicity stars.Comment: 57 pages, 37 figures. Updated to match the accepted ApJ version. Corresponding author: Joshua S. Dillo
    corecore