199 research outputs found

    Presentation of Class 1 designs for a family of commuter airplanes

    Get PDF
    The Class 1 configuration designs of a family of commuter aircraft are presented. The proposed aircraft will have a capacity of from 25 to 100 passengers. They are to have the following common features: (1) 2 aft fuselage mounted engines; (2) a low wing; (3) a T-tail type empennage; and (4) a tricycle type landing gear. A family concept is introduced to achieve structural, systems and handling quality commonality throughout. Implementing commonality can substantially reduce manufacturing and production costs. By achieving common system designs, maintenance costs can be reduced by permitting airlines to stock a smaller inventory of spares. Therefore, the higher degree of commonality, the lower the direct operating and life cycle costs. The attempt to implement some of the commonality requirements has caused configuration design problems, i.e., the twin-body concept was introduced. Design data are compared to existing aircraft, and the extent of structural, systems and handling qualities achieved are reviewed

    A class 2 weight assessment for the implementation of commonality and preliminary structural designs for the family of commuter airplanes

    Get PDF
    The feasibility of commonality objectives are determined. Commonality is discussed in terms of weight penalties that increase the take-off weight of several members of the family of airplanes. Preliminary designs of fuselage structural members and a discussion of weight penalties due to implementation of common fuselage structure throughout the family is examined. Wing torque box designs are discussed along with structural weight penalties incurred. A landing gear design study is contained along with the weight penalties that a common gear system will impose. Implementation of common power plants throughout the family and the weight penalties that occur are discussed. The weight penalties imposed by commonality on all the airplanes in the family are summarized. Class 2 breakdowns are also presented. The feasibility of commonality based on a percentage of take-off weight increase over the Class 2 baseline weights is then assessed

    A Regenerative Cardiac Patch Formed by Spray Painting of Biomaterials onto the Heart

    Get PDF
    Layering a regenerative polymer scaffold on the surface of the heart, termed as a cardiac patch, has been proven to be effective in preserving cardiac function after myocardial infarction (MI). However, the placement of such a patch on the heart usually needs open-chest surgery, which is traumatic, therefore prevents the translation of this strategy into the clinic. We sought to device a way to apply a cardiac patch by spray painting in situ polymerizable biomaterials onto the heart with a minimally invasive procedure. To prove the concept, we used platelet fibrin gel as the ā€œpaintā€ material in a mouse model of MI. The use of the spraying system allowed for placement of a uniform cardiac patch on the heart in a mini-invasive manner without the need for sutures or glue. The spray treatment promoted cardiac repair and attenuated cardiac dysfunction after MI

    Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome

    Get PDF
    Stem cell therapy represents a promising strategy in regenerative medicine. However, cells need to be carefully preserved and processed before usage. In addition, cell transplantation carries immunogenicity and/or tumourigenicity risks. Mounting lines of evidence indicate that stem cells exert their beneficial effects mainly through secretion (of regenerative factors) and membrane-based cellā€“cell interaction with the injured cells. Here, we fabricate a synthetic cell-mimicking microparticle (CMMP) that recapitulates stem cell functions in tissue repair. CMMPs carry similar secreted proteins and membranes as genuine cardiac stem cells do. In a mouse model of myocardial infarction, injection of CMMPs leads to the preservation of viable myocardium and augmentation of cardiac functions similar to cardiac stem cell therapy. CMMPs (derived from human cells) do not stimulate T-cell infiltration in immuno-competent mice. In conclusion, CMMPs act as ā€˜synthetic stem cellsā€™ which mimic the paracrine and biointerfacing activities of natural stem cells in therapeutic cardiac regeneration

    Effects of Matrix Metalloproteinases on the Performance of Platelet Fibrin Gel Spiked With Cardiac Stem Cells in Heart Repair: Effects of MMPs on Cell-Gel in Heart Repair

    Get PDF
    Stem cells and biomaterials have been studied for therapeutic cardiac repair. Previous studies have shown the beneficial effects of platelet fibrin gel and cardiac stem cells when cotransplanted into rodent hearts with myocardial infarction (MI). We hypothesized that matrix metalloproteinases (MMPs) play an important role in such protection. Thus, the present study is designed to elucidate the effects of MMP inhibition on the therapeutic benefits of intramyocardial injection of platelet fibrin gel spiked with cardiac stem cells (cell-gel) in a rat model of acute MI. In vitro, broad-spectrum MMP inhibitor GM6001 undermines cell spreading and cardiomyocyte contraction. In a syngeneic rat model of myocardial infarction, MMP inhibition blunted the recruitment of endogenous cardiovascular cells into the injected biomaterials, therefore hindering de novo angiogenesis and cardiomyogenesis. Echocardiography and histology 3 weeks after treatment revealed that metalloproteinase inhibition diminished the functional and structural benefits of cell-gel in treating MI. Reduction of host angiogenesis, cardiomyocyte cycling, and MMP-2 activities was evident in animals treated with GM6001. Our findings suggest that MMPs play a critical role in the therapeutic benefits of platelet fibrin gel spiked with cardiac stem cells for treating MI

    Statin use and risk of hepatocellular carcinoma in a U.S. population

    Get PDF
    Statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) are medications widely prescribed to reduce cholesterol levels. Observational studies in high-risk populations, mostly in Asia, have suggested that statins are associated with a reduced risk of hepatocellular carcinoma (HCC). The current study sought to evaluate the association of statin use and HCC in a U.S.-based, low-risk, general population

    Rapid and Efficient Production of Coronary Artery Ligation and Myocardial Infarction in Mice Using Surgical Clips

    Get PDF
    AimsThe coronary artery ligation model in rodents mimics human myocardial infarction (MI). Normally mechanical ventilation and prolonged anesthesia period are needed. Recently, a method has been developed to create MI by popping-out the heart (without ventilation) followed by immediate suture ligation. Mortality is high due to the time-consuming suture ligation process while the heart is exposed. We sought to improve this method and reduce mortality by rapid coronary ligation using a surgical clip instead of a suture.Methods and ResultsMice were randomized into 3 groups: clip MI (CMI), suture MI (SMI), or sham (SHAM). In all groups, heart was manually exposed without intubation through a small incision on the chest wall. Unlike the conventional SMI method, mice in the CMI group received a metal clip on left anterior descending artery (LAD), quickly dispensed by an AutoSuture Surgiclipā„¢. The CMI method took only 1/3 of ligation time of the standard SMI method and improved post-MI survival rate. TTC staining and Massonā€™s trichrome staining revealed a similar degree of infarct size in the SMI and CMI groups. Echocardiograph confirmed that both SMI and CMI groups had a similar reduction of ejection fraction and fraction shortening over the time. Histological analysis showed that the numbers of CD68+ macrophages and apoptotic cells (TUNEL-positive) are indistinguishable between the two groups.ConclusionThis new method, taking only less than 3 minutes to complete, represents an efficient myocardial infarction model in rodents
    • ā€¦
    corecore