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Therapeutic microparticles functionalized with
biomimetic cardiac stem cell membranes and
secretome
Junnan Tang1,2,3,4,*, Deliang Shen1,4,*, Thomas George Caranasos5,*, Zegen Wang6, Adam C. Vandergriff2,3,

Tyler A. Allen2,3, Michael Taylor Hensley2,3, Phuong-Uyen Dinh2,3, Jhon Cores2,3, Tao-Sheng Li7,

Jinying Zhang1,4, Quancheng Kan8 & Ke Cheng2,3,6,9

Stem cell therapy represents a promising strategy in regenerative medicine. However, cells

need to be carefully preserved and processed before usage. In addition, cell transplantation

carries immunogenicity and/or tumourigenicity risks. Mounting lines of evidence indicate

that stem cells exert their beneficial effects mainly through secretion (of regenerative factors)

and membrane-based cell–cell interaction with the injured cells. Here, we fabricate a

synthetic cell-mimicking microparticle (CMMP) that recapitulates stem cell functions in

tissue repair. CMMPs carry similar secreted proteins and membranes as genuine cardiac

stem cells do. In a mouse model of myocardial infarction, injection of CMMPs leads to the

preservation of viable myocardium and augmentation of cardiac functions similar to cardiac

stem cell therapy. CMMPs (derived from human cells) do not stimulate T-cell infiltration in

immuno-competent mice. In conclusion, CMMPs act as ‘synthetic stem cells’ which mimic

the paracrine and biointerfacing activities of natural stem cells in therapeutic cardiac

regeneration.
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M
ultiple types of adult stem cells, such as mesenchymal
stem cells, cardiac stem cells (CSCs), and endothelial
progenitor cells have entered clinical investigations

worldwide1–6. Differentiation of injected cells into the host tissues
has been reported. However, these sporadic events could not
explain the therapeutic benefits seen in animal models and
human trials7,8. Later on, the field realized that one important

mode of therapeutic action is the secretion of paracrine factors by
injected stem cells that act like ‘mini-drug pumps’ to promote
endogenous repair9,10. Moreover, stem cell membranes are not
null in the repair process: contact with the injected stem cells
triggers intracellular protective/regenerative pathways in the host
cells11,12. On the basis of these two aspects, we proposed a ‘core-
shell’ design of a therapeutic microparticle (MP) which mimicked
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Figure 1 | Physiochemical and biological properties of CMMPs. (a) Overall biochemical design and study model of CMMPs. MPs (that is, Control MP1)

were fabricated from PLGA and conditioned media of human CSCs, then MPs were cloaked with membrane fragments of CSCs to form CMMPs. Control

MP2 was fabricated by cloaking empty PLGA particles with CSC membranes. The therapeutic potential of CMMPs was tested in a mouse model of

myocardial infarction. (b,c) Texas red succinimidyl ester-labelled MPs (b, red) were cloaked with the membrane fragments of green fluorescent

DiO-labelled CSCs (b, green) to form CMMP (c, red particle with green coat). Scale bar, 20mm. (d,e) SEM revealed the CSC membrane fragments on

CMMPs (e) but not on Control MP1 (non-cloaked MP) (d). Scale bar, 10mm. (f,g) Major human CSC markers CD105 (f) and CD90 (g) were positive on

CMMPs and Control MP2 but not on non-cloaked Control MP1, indicating the successful membrane cloaking on CMMPs. (h) CMMPs, Control MP1 and

Control MP2 have similar sizes to those of CSCs. n¼ 3 for each group. (i) CMMPs and Control MP2 carried similar surface antigens as CSCs did. n¼ 3 for

each group. (j–l) Similar release profile of CSC factors (namely vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF)-1 and hepatocyte

growth factor (HGF)) was observed in CMMPs and Control MP1, indicating membrane cloaking did not affect the release of CSC factors from CMMPs and

Control MP1. n¼ 3 for each time point. All data are mean±s.d. Comparisons between any two groups were performed using two-tailed unpaired Student’s

t-test. Comparisons among more than two groups were performed using one-way ANOVA followed by post hoc Bonferroni test.
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stem cell biointerfacing during regeneration. This particle, named
cell-mimicking MP (CMMP), contained control-released stem
cell factors in its polymeric core and was cloaked with stem cell
membrane fragments on the surface. Our hypothesis is that
CMMP can exert similar regenerative outcomes as real CSCs but
are superior to the later since they are more stable during storage
and do not stimulate T-cell immune reaction since they are not
real cells.

In the present study, we report for the first time a poylmer MP
which emulates CSC functions during tissue repair. In a mouse
model of myocardial infarction, injection of CMMPs led to
preservation of viable myocardium and augmentation of cardiac
functions similar to CSC therapy. CMMPs (derived from human
cells) did not stimulate T-cell infiltration in immuno-competent
mice, suggesting their excellent safety profile. Although our first
application targeted the heart, the CMMP strategy represents a
platform technology that can be applied to multiple stem cell
types and the repair of various organ systems.

Results
Physiochemical and biological properties of CMMPs. The
biochemical design and work model of CMMPs were outlined in
Fig. 1a. Briefly, Control MP1 were fabricated from poly(lactic-co-
glycolic acid) (PLGA) and conditioned media of human CSCs
which were isolated from human hearts using the cardiosphere
method as previously described13,14 (Supplementary Fig. 1). The
conditioned media contains various growth factors secreted by
CSCs10. CSCs have been tested and proven safe and effective in
Phase I/II clinical trials1–3. After that, MPs (Texas red

succinimidyl ester-labelled; Fig. 1b, red) were cloaked with the
membrane fragments of CSCs (green fluorescent DiO-labelled;
Fig. 1b, green) to become the final product CMMP (Fig. 1c, red
particle with green coat). Fluorescent imaging revealed there is no
specific DiO outer layer fluorescence on Texas red succinimidyl
ester-labelled MPs (Control MP1) after 30 min co-culture
(Supplementary Fig. 2). Scanning electron microscopy (SEM)
revealed the effective CSC membrane cloaking on CMMPs
(Fig. 1e) but not on non-cloaked MPs (Control MP1; Fig. 1d). As
another control particle, Control MP2 was fabricated by cloaking
empty PLGA particles with CSC membranes. We fabricated
CMMPs, Control MP1 and Control MP2 with sizes similar to
those of real CSCs (Fig. 1h). As an indicator of successful
membrane cloaking, flow cytometry analysis confirmed the
expression of major human CSC markers (for example, CD105,
CD90) on CMMPs and Control MP2 but not on Control MP1

(Figs 1f,g and 2). Overall, both CMMPs and Control MP2 carried
similar surface antigens as CSCs did (Fig. 1i). Membrane cloaking
did not affect the release of CSC factors (namely vascular
endothelial growth factor, insulin-like growth factor-1 and
hepatocyte growth factor) from CMMPs and Control MP1

(Fig. 1j–l; Supplementary Fig. 3). Snap freezing in � 80 �C and
thawing in water did not affect the membrane coating
(Supplementary Fig. 4a), size (Supplementary Fig. 4b,c) or
surface antigen expression of CMMPs (Supplementary Fig. 4d–
f). These results confirmed CMMPs recapitulated the secretome
and surface antigen profile of genuine CSCs. In contrast, Control
MP1 contained CSC secretome but not the membranes of
CSCs, while Control MP2 carried the membranes of CSCs
successfully.
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Figure 2 | Fluorescence densities of CD105 and CD90 expressions on CMMPs and CSCs. (a) Fluorescent images of CSCs (left panel) and CMMPs

(right panel) labelled with CD105-PE conjugated antibody. Quantitative analysis of fluorescent intensities of CSCs (blue bar) and CMMPs (green bar).

(b) Fluorescent images of CSCs (left panel) and CMMPs (right panel) labelled with CD90-FITC conjugated antibody. Quantitative analysis of fluorescent

intensities of CSCs (blue bar) and CMMPs (green bar). n¼6 for each group. All data are mean±s.d. # indicates Po0.05 when compared with CMMP

group. Comparisons were performed by two-tailed unpaired Student’s t-test.
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CMMPs promote cardiomyocyte functions in vitro. An
important potency indicator of CSCs is their ability to promote
the functions of in vitro-cultured cardiomyocytes. CMMPs,
Control MP1, Control MP2, or CSCs (red, Fig. 3a) were co-cul-
tured with neonatal rat cardiomyocytes (NRCMs; stained for
alpha-sarcomeric actin (green), Fig. 3a) in plain Iscove’s modified
Dulbecco’s medium. Solitary NRCM culture was included as the
negative control. While Control MP1 (red bar, Fig. 3b) increased
the numbers of NRCMs as compared with those from Control
MP2 (pink bar, Fig. 3b) or solitary NRCM culture (white bar,
Fig. 3b), the greatest NRCM numbers were seen in those co-
cultured with CMMPs (green bar, Fig. 3b) and genuine CSCs
(blue bar, Fig. 3b). Furthermore, CMMPs and Control MP1

robustly promoted NRCM contractility (Fig. 3c) and proliferation
(as indicated by Ki67-positive nuclei, Fig. 3d). Both CMMPs and
Control MP2 could firmly bind to cardiomyocytes, as cells did,
while most non-cloaked Control MP1 floated in the media
(Fig. 3e). Such binding was confirmed by CMMPs’ synchronized
movement with adjacent beating cardiomyocytes (Fig. 3f;
Supplementary Movies 1 and 2). Moreover, time-lapse imaging
revealed the rolling (Fig. 2g; Supplementary Movie 3) and tra-
velling (Fig. 3h; Supplementary Movie 4) of CMMPs on attached
cardiomyocytes, suggesting the biointerfacing between CMMPs
and cardiomyocytes. Such dynamic activities were not seen in
non-cloaked Control MP1. These in vitro cell-based assays suggest
the regenerative potential of CMMPs in the heart.
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Figure 3 | Effects of CMMPs on NRCMs functions in vitro. (a) Representative images of cardiomyocytes stained with alpha sarcomeric actin (green)

co-cultured with Control MP1, Control MP2, CMMPs or CSCs (red). Scale bar, 200mm. (b) Quantitative analysis reflected that Control MP1 (red bar)

increased the numbers of NRCMs as compared with those from Control MP2 (pink bar) or solitary NRCM culture (white bar), but the greatest NRCM

numbers were seen in those co-cultured with CMMPs (green bar) and genuine CSCs (blue bar). n¼ 5 for each group. (c) Higher NRCM contractility was

seen in those cultured with CMMPs (green bar) and CSCs (blue bar) compared with those cultured with Control MP1 (red bar). n¼ 5 for each group.

(d) Representative images and quantitative analysis of NRCMs stained with alpha sarcomeric actin (green) and proliferation marker Ki67 (red), treated

with Control MP1, Control MP2, CMMPs or CSC. n¼ 5 for each group. Scale bar, 50mm. (e) Representative images and quantitative analysis of CMMP

(red) or Control MP1 (red), Control MP2 (red) binding to NRCMs (green). n¼ 3 for each group. Scale bar, 50mm. (f) Representative movie screenshots and

quantitation of Control MP1’s and CMMP’s synchronized movement with adjacent beating cardiomyocytes. n¼ 3 for each group. Scale bar, 50mm.

(g,h) Time-lapse imaging revealed the rolling (g) and travelling (h) of CMMPs on attached cardiomyocytes. Yellow arrows indicated the rolling or moving

directions. Scale bar, 20mm. All data are mean±s.d. * indicates Po0.05 when compared with Control group; # indicates Po0.05 when compared with

Control MP1 group; & indicated Po0.05 when compared with Control MP2. Comparisons between any two groups were performed using two-tailed

unpaired Student’s t-test. Comparisons among more than two groups were performed using one-way ANOVA followed by post hoc Bonferroni test.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13724

4 NATURE COMMUNICATIONS | 8:13724 | DOI: 10.1038/ncomms13724 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


CMMP therapy in immunodeficient mice with heart attack. To
test the therapeutic potential of CMMPs, we employed a mouse
model of myocardial infarction (heart attack) by left anterior
descending artery (LAD) ligation (Fig. 4a). CMMPs or Control
MP1 were intramyocardially injected immediately after LAD
ligation. Negative or positive control animals received injection of
vehicle (PBS) or CSCs, respectively. Ex vivo fluorescent imaging
at Day 3 revealed that more CMMPs were retained in the heart
after injection than Control MP1 (Fig. 4b) were. This was further
confirmed by histology (Fig. 4c). This was consistent with
CMMP’s superior binding to cardiomyocytes in vitro (as seen in
Fig. 3). In addition, ex vivo fluorescent imaging indicated that the
majority of CMMPs remained in the heart after injection, while
‘washed away’ CMMP signal could be found in the lung and the
liver (Supplementary Fig. 5), consistent with the notion that the
needle injection can cause vessel damage and the venous drainage
brings the particles to the lungs15. The off-target expression in the
liver may represent the leakage of CMMPs into the LV cavity
during injection. Nevertheless, the majority of CMMPs remain in
the heart after injection.

In vivo degradation of CMMPs was evident as only a negligible
amount of particles remained in the heart at Day 28
(Supplementary Fig. 6). A cohort of animals was killed at Day
7 for assessment of myocardial tissue apoptosis and infiltration of
macrophages in CMMP-treated animals. TdT-mediated dUTP
nick end labelling (TUNEL) staining revealed the anti-apoptosis
effects of CMMP: less apoptotic nuclei were detected in areas with
the presence of CMMPs (green nuclei, Fig. 4d). CMMP treatment
did not cause the exacerbation of inflammation: the tissue
densities of CD45-positive cells were indistinguishable in areas
with or without CMMPs (Fig. 4e). Masson’s trichrome staining 4
weeks after treatment (Fig. 4f; red¼ healthy myocardium and
blue¼ scar tissue) revealed Control MP1 treatment (red bars,
Fig. 4g–i) exhibited a certain degree of heart morphology
protection compared with Control PBS injections (white bars,
Fig. 4g–i). However, the greatest protective effects were seen in
the animals treated with CMMPs (green bars, Fig. 4g–i). Such
protective effects were similar to those injected with CSCs (blue
bars, Fig. 4g–i). The bona fide efficacy indicator for stem cell
therapy is the ability to ameliorate ventricular dysfunction or
even boost cardiac function over time, gauged by echocardio-
graphy. Left ventricular ejection fractions (LVEFs) were measured
at baseline (4 h post infarct) and 4 weeks afterwards. LVEFs were
indistinguishable at baseline for all groups (Fig. 4j), indicating a
similar degree of initial heart injury. Over the 4 week period,
the LVEFs in control (PBS or saline)-treated animals continued
deteriorating (white bar, Fig. 4k) while the Control MP1-treated
animals exhibited a trend of LVEF augmentation (red bar,
Fig. 4k) but did not reach statistical significance. CMMP treat-
ment robustly boosted cardiac function with the highest LVEFs at
4 weeks (green bar, Fig. 4k). Such treatment effects were indisti-
nguishable from those of CSC treatment with real CSCs (blue
bars, Fig. 4k). Histological analysis indicated that such functional
benefits by CMMP treatment were accompanied by remuscular-
ization (Fig. 5a), proliferation of endogenous cardiomyocytes
(Fig. 5b), augmentation of blood flow (Fig. 5c), and increase of
vessel density (Fig. 5d) in the post-MI heart.

CMMP injection does not promote T-cell infiltration in nor-
mal mice. To evaluate the local T-cell immune response to
CMMPs, immune-competent CD1 mice were intramyocardially
injected with human CSCs or CMMPs. Animals were killed 7
days after injection for assessment of immune rejection in the
heart, as gauged by CD3þ and CD8þ T cell infiltration (Fig. 6a).
CMMP (red) injection elicits negligible T-cell rejection as very
few CD3þ (green) or CD8þ (green) T cells were detected in the

heart (Fig. 6c,e). In contrast, severe rejection was detected in
mouse hearts treated with human CSCs: injected CSCs (red) were
surrounded by clusters of CD3þ (green) or CD8þ (green) T cells
(Fig. 6b,d). Quantitative analysis also confirmed that CMMP
stimulated negligible local T-cell infiltration as compared with the
severe T-cell stimulation by human CSCs (Fig. 6f,g).

Discussion
The last one and a half decades witnessed the booming of stem
cell therapies for multiple diseases16–18. Deviating from the initial
perspective that stem cells exert their therapeutic effects through
direct cell differentiation and tissue replacement, the paradigm
has shifted as emerging evidence suggests that most adult stem
cell types exert their beneficial effects through paracrine
mechanisms (soluble factors)19–21. In addition, studies further
suggest that cell–cell contact between the injected cells and the
host cells plays an important role in tissue regeneration11. PLGA,
as a biocompatible and biodegradable polymer, has provided a
safe and non-toxic building block for various control-release
systems22. Previous studies have demonstrated the success of
coating PLGA nanoparticles with cell membranes from red blood
cells23, platelets24 and cancer cells25,26. Inspired by these findings,
we designed CMMPs and demonstrated the therapeutic effects of
CMMPs in an experimental myocardial infarction model. The
comparison between CMMP and CSCs is outlined in Suppleme-
ntary Table 1. CMMP represents a synthetic MP functionalized
with both stem cell membranes and secretome, harnessing the
power of these two major components of stem cell-induced rege-
neration. Moreover, CMMP overcomes several major limitations
of live stem cells as therapy products. First, stem cells need to be
carefully cryo-preserved and thawed before they can be sent to
the clinic. As living organisms, how the cells are prepared and
processed can greatly affect the therapeutic outcomes. Second,
stem cell transplantation carries certain risks (for example,
tumourogenecity and immunogenicity if allogeneic or xenogeneic
cells were used). CMMPs will most likely be delivered
intramyocardially via direct muscle injection. Such injection
normally requires open-chest surgery. However, percutaneous
options are becoming available with the implementation of the
NOGA mapping systems27. Moreover, our future studies will
explore the potential of vascular delivery of CMMPs (for example,
intracoronary, intravenous) with the focus on targeting CMMPs
to the injury and promoting extravasation through the
mechanism of angiopellosis28,29. One caveat of our study is that
with the existing assay it is difficult to conclude whether
cardiomyocytes (or their progenitors) really are proliferating
and leading to remuscularization after CMMP injection.
Although this proof-of-concept study targets the heart, CMMP
represents a platform technology that is generalizable to other
stem cell types and the repair of various other organ systems.

Methods
Derivation and culture of human CSCs. Institutional review board approval was
obtained for all procedures, and informed consent was achieved from all patients.
Human CSCs were derived from donor human hearts as previously described5,13.
Briefly, myocardial tissues were minced into small pieces (about 2 mm3), then
washed with PBS and digested with collagenase solution (Sigma, St. Louis, MO,
USA). The tissue fragments were cultured as ‘cardiac explants’ on plates coated
with 0.5 mg ml� 1 fibronectin (Corning, Corning, NY, USA) in Iscove’s modified
Dulbecco’s medium (Invitrogen, Carlsbad, CA, USA) supplemented with 20% fetal
bovine serum (Corning), 0.5% Gentanicin (Gibco, Life Technologies, California,
USA), 0.1 mM 2-mercaptoethanol (Invitrogen, Carlsbad, CA, USA) and 1%
L-glutamine (Invitrogen, Carlsbad, CA, USA). Within 1–2 weeks, a layer of
stromal-like flat cells, and phase-bright round cells, emerged from the cardiac
explant with phase bright cells over them. These cardiac explant-derived cells were
collected using TryPLE Select (Gibco), and then seeded at a density of 2� 104

cells ml� 1 in UltraLow Attachment flasks (Corning) for cardiosphere formation.
In about 1 week, explant-derived cells spontaneously aggregated into
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(myocytes stained with alpha sarcomeric actin (green)) 3 days after injection of Control MP1 (red) or CMMPs (red). n¼ 3 animals per group. Scale bar,

50mm. * indicated Po0.05 when compared with Control MP1 group. (d) Representative fluorescent micrographs and quantitative analysis showing the

presence of TUNELþ apoptotic cells (green) in CMMP-treated hearts at Day 7. n¼ 3 animals per group. Scale bar, 50mm. * indicated Po0.05.

(e) Representative fluorescent micrographs showing the presence of CD45þ cells (green) in the hearts treated with or without CMMPs (red) at Day 7.

n¼ 3 animals per group. Scale bar, 50mm. NS indicated P40.05. (f) Representative Masson’s trichrome-stained myocardial sections 4 weeks after

treatment with Control PBS, Control MP1, CMMPs or CSCs. In this staining blue¼ scar tissue and red¼ viable myocardium. Snapshots¼ high magnification

images of the red box area. (g–i) Quantitative analyses of viable myocardium (g), infarct thickness (h) and scar size (i) from the Masson’s trichrome

images. n¼ 5 animals per group. (j,k) LVEF was measured by echocardiography at baseline (4 h post-MI) and 4 weeks afterward in Control PBS, Control

MP1, CMMP and CSC groups. n¼ 7 animals per group. * indicated Po0.05 when compared with Control group; # indicated Po0.05 when compared with

Control MP1 group; NS indicated P40.05. All data are mean±s.d. Comparisons between any two groups were performed using two-tailed unpaired

Student’s t-test. Comparisons among more than two groups were performed using one-way ANOVA followed by post hoc Bonferroni test.
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cardiospheres. Cardisophere-derived CSCs were generated by seeding collected
cardiospheres on fibronectin-coated plates. All cultures were incubated in 5% CO2

at 37 �C.

Fabrication of Control MPs and CMMPs. CSC factor-loaded PLGA micro-
particles (Control MP1) were fabricated by a water/oil/water (w/o/w) emulsion
technique. Briefly, human CSC conditioned media as the internal aqueous phase
with polyvinyal alcohol (0.1% w/v) was mixed in methylene chloride (DCM)
containing PLGA as the oil phase. The mixture was then sonicated on ice for
30 s using a sonicator with a Microtip probe (Misonix, XL2020, Farmingdale,
NY, USA). After that, the primary emulsion was immediately introduced into
water with polyvinyal alcohol (0.7% w/v) to produce a w/o/w emulsion. The
secondary emulsion was emulsified for 5 min on a high-speed homogenizer. The
w/o/w emulsion was continuously stirred overnight at room temperature to
promote solvent evaporation. The solidified MPs, namely Control MP1, were then
centrifuged, washed three times with water, lyophilized and stored at � 80 �C.
To prepare CMMPs, DiO (Invitrogen)-labelled CSCs went through three
freeze/thaw cycles. After which, the disrupted CSCs were sonicated for B5 min
at room temperature along with the Control MP1. After that, the particles were
washed three times in PBS by centrifugation. Control MP2 was fabricated by
cloaking empty PLGA particles with CSC membranes. Successful membrane
coating was confirmed using fluorescent microscopy.

Protein release studies. Total protein contents in MPs were determined using the
following method. Approximately 10 mg freeze-dried microparticles were dissolved
in 1 ml DCM for 60 min. Then, 1 ml PBS was added into solution followed by
agitation for 10 min to extract protein from DCM into PBS. After centrifugation,

the concentration of protein in the aqueous phase was determined by a BCA
Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). For release
studies, MPs were incubated in PBS at 37 �C. Supernatant was collected at various
time points and the concentrations of proteins were determined by commercially
available ELISA kits (R & D Systems, Minneapolis, MN, USA)

Scanning electron microscopy. The morphology of microparticles was studied by
SEM (Philips XL30 scanning microscope, Philips, The Netherlands). Freeze-dried
microparticles were mounted on aluminium stubs with double-sided tape and
coated with a thin layer of gold. The coated specimen was then scanned and
photographed under the microscope at an acceleration voltage of 15 kV.

Flow cytometry. To characterize the phenotypes of Control MP1, Control MP2,
CMMP, and CSC, flow cytometry was performed using a CytoFLEX Flow
Cytometer (Beckman Coulter, Brea, CA) and analysed using FCS Express software
(De Novo Software, Los Angeles, CA). Briefly, cells were incubated with FITC,
PE, or APC-conjugated antibodies against CD105 (10 ml per 40ml of sample, FAB
10971P, R&D Systems), CD90 (10 ml per 40 ml of sample, BD 555595), CD45
(10 ml per 40ml of sample, BD 555482), CD34 (10 ml per 40 ml of sample, BD
555821) and CD117 (5 ml per 45 ml of sample, c-kit; BD 550412) from BD company
(Franklin Lakes, NJ) for 60 min. Isotype-identical antibodies from BD Company
served as negative controls.

Immunocytochemistry. Control MP1, Control MP2, CMMP, and CSC were
pre-labelled with red-fluorescent Texas red succinimidyl ester (1 mg ml� 1

(Invitrogen, Carlsbad, California)). NRCM or NRCM co-cultured with pre-labelled

Control

Lectin DAPI

0

20

40

60

80

Relative blood
flow

(%
)

alpha -SMA DAPI

CMMP

Control

0

10

20

30

40

50

αSMAPOS

vasculatures

n 
pe

r 
H

P
F

0

2

4

6

8

10
ki67POS myocytes

C
el

ls
 p

er
 m

m
2

Ctrl MP1 Ctrl MP1

CMMP

DAPI alphaSA

Control

CMMP

Ctrl MP1

Con
tro

l

Ctrl
. M

P 1

CM
M

P

Con
tro

l

Ctrl
. M

P 1

CM
M

P

Con
tro

l

Ctrl
. M

P 1

CM
M

P

Con
tro

l

Ctrl
. M

P 1

CM
M

P

0

20

40

60
αSAPOS myocytes

F
lu

o.
 v

al
ue

 (
a.

u.
)

a

c d

*

*

ki67 alphaSA 

Control

CMMP

b

100 μm 20 μm

100 μm 50 μm

*

*

* *

* *

Ctrl MP1

Figure 5 | Injection of CMMPs promotes angiomyogenesis. (a) Representative images showing alpha sarcomeric actin (aSA)-positive cardiomyocyte

nuclei (green) in control PBS-, Control MP1- or CMMP-treated hearts at 4 weeks. The numbers of aSA-positive nuclei were quantified. n¼ 3 animals per

group. Scale Bar, 100mm. (b) Representative images showing Ki67-positive cardiomyocyte nuclei (green) in control PBS-, Control MP1- or CMMP-treated

hearts at 4 weeks. The numbers of Ki67-positive nuclei were quantified. n¼ 3 animals per group. Scale Bar, 20mm. (c) Representative images showing

lectin-labelled blood vessels (green) in control PBS- and Control MP1- or CMMP-treated hearts at 4 weeks. The lectin fluorescent intensities were

quantified. n¼ 3 animals per group. Scale Bar, 100mm. (d) Representative images showing arterioles stained with alpha smooth muscle actin (aSMA, red)

in control PBS-, Control MP1- or CMMP-treated hearts at 4 weeks. The numbers of aSMA positive vasculatures were quantified. n¼ 3 animals per group.

Scale Bar, 50mm. * indicates Po0.05 when compared with CMMP group. All data are mean±s.d. Comparisons among more than two groups were

performed using one-way ANOVA followed by post hoc Bonferroni test.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13724 ARTICLE

NATURE COMMUNICATIONS | 8:13724 | DOI: 10.1038/ncomms13724 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


Control MP1, Control MP2, CMMP, and CSC were plated onto fibronectin-coated
chamber slides (BD Biosciences) and subsequently fixed with 4% paraformalde-
hyde before immunocytochemistry (ICC) staining. Slides were stained with the
antibodies against a-SA (1:100, a7811, Sigma) or ki67 (1:100, ab15580, Abcam)
and detected by FITC- or Texas Red-conjugated secondary antibodies (1:100).
Nuclei were stained with DAPI. Images were taken with an epi-fluorescent
microscope (Olympus IX81).

Mouse model of myocardial infarction. All animal work was compliant with the
Institutional Animal Care and Use Committee at North Carolina State University.

The method to induce myocardial infarction in mice was based on previous
studies30. Briefly, male SCID Beige mice were anaesthetized with 3% isofluorane
combined with 2% oxygen inhalation. Under sterile conditions, the heart was
exposed by a minimally invasive left thoracotomy and acute myocardial infarction
(AMI) was produced by permanent ligation of the LAD coronary artery.
Immediately after AMI induction, the heart was randomized to receive one of the
following four treatment arms: (1) ‘Control (PBS)’ group: intramyocardial injection
of 50ml PBS into the heart immediately after AMI; (2) ‘Control MP1’ group:
intramyocardial injection of 1� 105 Control MP1 in 50ml PBS into the heart
immediately after AMI; (3) ‘CMMP’ group: intramyocardial injection of 1� 105

CMMPs in 50ml PBS into the heart immediately after AMI; (4) ‘CSC’ group:
intramyocardial injection of 1� 105 CSCs in 50ml PBS into the heart immediately
after AMI. To enable visualization of Control MP1 or CMMP in a cohort of
animals, we pre-labelled the Control MP1 or CMMP with Texas Red-X
succinimidyl ester (1 mg ml� 1 (Invitrogen, Carlsbad, California)).

Ex vivo fluorescent imaging for biodistribution of CMMPs. Seven days after
injection, a cohort of mice receiving CMMPs were killed; their heart, lung, spleen,
liver, and kidneys were removed for biodistribution studies. Ex vivo fluorescent
imaging was performed with an IVIS Xenogen In Vivo Imager (Caliper Life-
sciences, Waltham, MA).

Heart morphometry. After the echocardiography study at 4 weeks, all animals
were killed and hearts were collected and frozen in optimum cutting temperature
(OCT) compound. Specimens were sectioned at 10 mm thickness from the apex to
the ligation level with 100 mm intervals. Masson’s trichrome staining was per-
formed as described by the manufacturer’s instructions (HT15 Trichrome Staining
(Masson) Kit; Sigma-Aldrich). Images were acquired with a PathScan Enabler IV
slide scanner (Advanced Imaging Concepts, Princeton, NJ). From the Masson’s
trichrome stained images, morphometric parameters including viable myocardium,
infarct thickness and scar size were measured in each section with NIH ImageJ
software. The percentage of viable myocardium as a fraction of the scar area
(infarcted size) was quantified as described31–33. Three selected sections were
quantified for each animal.

Cardiac function assessment. All animals underwent transthoracic echocardio-
graphy under 1.5% isofluorane-oxygen mixture anaesthesia in supine position
at 4 h and 4 weeks. The procedure was performed by an animal cardiologist blind
to the experimental design using a Philips CX30 ultrasound system coupled with
an L15 high-frequency probe. Hearts were imaged in 2D in long-axis views at
the level of the greatest LV diameter. EF was determined by using the formula
(LVEDV–LVESV/LVEDV)� 100%.

Histology. For immunohistochemistry staining, heart cryosections were fixed with
4% paraformaldehyde, permeabilized and blocked with Protein Block Solution
(DAKO, Carpinteria, CA) containing 0.1% saponin (Sigma, St Louis, MO), and
then incubated with the following antibodies overnight at 4 �C: mouse anti-alpha
sarcomeric actin (1:100, a7811, Sigma), rabbit anti-CD45 (1:100, ab10559, Abcam,
Cambridge, United Kingdom), mouse anti-Actin, a-Smooth Muscle antibody
(1:100, A5228, Sigma), rabbit anti-Ki67 (1:100, ab15580, Abcam), rabbit anti-CD3
(1:100, ab16669, Abcam) and mouse anti-CD8 alpha (1:100, mca48r, abd Serotec,
Raleigh, NC ). FITC- or Texas-Red secondary antibodies (1:100) were obtained
from Abcam Company and used for the conjunction with these primary anti-
bodies. For assessment of cell apoptosis, heart cryosections were incubated with
TUNEL solution (Roche Diagnostics GmbH, Mannheim, Germany) and counter-
stained with DAPI (Life Technology, NY, USA). For assessment of angiogram,
heart cryosections were incubated with Lectin (FL-1171, Vector laboratories,
Burlingame, CA, USA). Images were taken by an Olympus epi-fluorescence
microscopy system.

Immunogenicity studies for human CSCs and CMMPs. Immuno-competent
male CD1 mice were anaesthetized with 3% isofluorane combined with 2% oxygen
inhalation. Under sterile conditions, the heart was exposed by a minimally invasive
left thoracotomy, and the heart was randomized to receive one of the two treat-
ments: (1) ‘CMMP’ group: intramyocardial injection of 1� 105 CMMPs in 50 ml
PBS into the heart; (2) ‘CSC’ group: intramyocardial injection of 1� 105 human
CSCs in 50ml PBS into the heart. To enable visualization of CMMPs or CSCs, they
were pre-labelled with red fluorophore.

Statistical analysis. All results are expressed as mean±s.d. Comparison between
two groups was performed with two-tailed Student’s t-test. Comparisons among
more than two groups were performed using one-way ANOVA followed by
post hoc Bonferroni test. Differences were considered statistically significant
when the P valueo0.05.
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Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information files or
from the corresponding author on reasonable request.
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