162 research outputs found
Omental and pleural milky spots: different reactivity patterns in mice infected with Schistosoma mansoni reveals coelomic compartmentalisation
In vertebrate animals, pleural and peritoneal cavities are repositories of milky spots (MS), which constitute an organised coelom-associated lymphomyeloid tissue that is intensively activated by Schistosoma mansoni infection. This study compared the reactive patterns of peritoneal MS to pleural MS and concluded from histological analysis that they represent independent responsive compartments. Whole omentum, lungs and the entire mediastinum of 54 S. mansoni-infected mice were studied morphologically. The omental MS of infected animals were highly activated, modulating from myeloid-lymphocytic (60 days of infection) to lymphomyeloid (90 days of infection) and lymphocytic or lymphoplasmacytic (160 days of infection) types. The non-lymphoid component predominated in the acute phase of infection and was expressed by monocytopoietic, eosinopoietic and neutropoietic foci, with isolated megakaryocytes and small foci of late normoblasts and mast cells. Nevertheless, pleural or thoracic MS of infected mice were monotonous, consisting of small and medium lymphocytes with few mast and plasma cells and no myeloid component. Our data indicate that compartmentalisation of the MS response is dependent on the lymphatic vascularisation of each coelomic cavity, limiting the effects or consequences of any stimulating or aggressive agents, as is the case with S. mansoni infection
A Rapid and Simple Procedure for the Establishment of Human Normal and Cancer Renal Primary Cell Cultures from Surgical Specimens
The kidney is a target organ for the toxicity of several xenobiotics and is also highly susceptible to the development of malignant tumors. In both cases, in vitro studies provide insight to cellular damage, and represent adequate models to study either the mechanisms underlying the toxic effects of several nephrotoxicants or therapeutic approaches in renal cancer. The development of efficient methods for the establishment of human normal and tumor renal cell models is hence crucial. In this study, a technically simple and rapid protocol for the isolation and culture of human proximal tubular epithelial cells and human renal tumor cells from surgical specimens is presented. Tumor and normal tissues were processed by using the same methodology, based on mechanical disaggregation of tissue followed by enzymatic digestion and cell purification by sequential sieving. The overall procedure takes roughly one hour. The resulting cell preparations have excellent viabilities and yield. Establishment of primary cultures from all specimens was achieved successfully. The origin of primary cultured cells was established through morphological evaluation. Normal cells purity was confirmed by immunofluorescent staining and reverse transcription-polymerase chain reaction analysis for expression of specific markers
IL-6 is constitutively expressed during lung morphogenesis and enhances fetal lung explant branching
Previous studies have shown that chorioamnionitis, with increased IL-6, promotes fetal lung maturation and decreases the incidence of respiratory distress syndrome in premature neonates. However, the expression pattern and the effects of IL-6 on fetal lung growth mechanisms remain unknown. IL-6 expression was assessed by in situ hybridization and by real-time PCR between 14.5 and 21.5 d postconception. Normal and nitrofen-induced hypoplastic lung explants were cultured with increasing IL-6 doses or IL-6 neutralizing antibodies. Branching, cellular proliferation (Ki-67) and MAPK phosphorylation in fetal lung explants were analyzed. Pulmonary primitive epithelium expressed IL-6 constitutively throughout all gestational ages, displaying highest levels during earliest stages. In normal and hypoplastic lung explants, IL-6 neutralizing antibodies significantly reduced, whereas IL-6 supplementation induced a biphasic effect (lower doses increased, while the highest dose did not accomplish additional effect) on branching and cellular proliferation. IL-6 enhanced p38-MAPK phosphorylation without changing MEK1/2 and JNK pathways. The present study suggests a physiological role for IL-6 on pulmonary branching mechanisms most likely involving p38-MAPK intracellular signalling pathway
Use of DNA technology in forensic dentistry
The established importance of Forensic Dentistry for human identification, mainly when there is little remaining material to perform such identification (e.g., in fires, explosions, decomposing bodies or skeletonized bodies), has led dentists working with forensic investigation to become more familiar with the new molecular biology techniques. The currently available DNA tests have high reliability and are accepted as legal proofs in courts. This article presents a literature review referring to the main studies on Forensic Dentistry that involve the use of DNA for human identification, and makes an overview of the evolution of this technology in the last years, highlighting the importance of molecular biology in forensic sciences
- …