23 research outputs found

    CHAOS AND STRUCTURE OF LEVEL DENSITIES

    Full text link

    Inside Out: Modern Imaging Techniques to Reveal Animal Anatomy

    Get PDF
    Animal anatomy has traditionally relied on detailed dissections to produce anatomical illustrations, but modern imaging modalities, such as MRI and CT, now represent an enormous resource that allows for fast non-invasive visualizations of animal anatomy in living animals. These modalities also allow for creation of three-dimensional representations that can be of considerable value in the dissemination of anatomical studies. In this methodological review, we present our experiences using MRI, CT and μCT to create advanced representation of animal anatomy, including bones, inner organs and blood vessels in a variety of animals, including fish, amphibians, reptiles, mammals, and spiders. The images have a similar quality to most traditional anatomical drawings and are presented together with interactive movies of the anatomical structures, where the object can be viewed from different angles. Given that clinical scanners found in the majority of larger hospitals are fully suitable for these purposes, we encourage biologists to take advantage of these imaging techniques in creation of three-dimensional graphical representations of internal structures

    Full-System Simulation of Mobile CPU/GPU Platforms

    Get PDF
    Graphics Processing Units (GPUs) critically rely on a complex system software stack comprising kernel- and userspace drivers and Just-in-time (JIT) compilers. Yet, existing GPU simulators typically abstract away details of the software stack and GPU instruction set. Partly, this is because GPU vendors rarely release sufficient information about their latest GPU products. However, this is also due to the lack of an integrated CPU/GPU simulation framework, which is complete and powerful enough to drive the complex GPU software environment. This has led to a situation where research on GPU architectures and compilers is largely based on outdated or greatly simplified architectures and software stacks, undermining the validity of the generated results. In this paper we develop a full-system system simulation environment for a mobile platform, which enables users to run a complete and unmodified software stack for a state-of-the-art mobile Arm CPU and Mali-G71 GPU powered device. We validate our simulator against a hardware implementation and Arm’s stand-alone GPU simulator, achieving 100% architectural accuracy across all available toolchains. We demonstrate the capability of our GPU simulation framework by optimizing an advanced Computer Vision application using simulated statistics unavailable with other simulation approaches or physical GPU implementations. We demonstrate that performance optimizations for desktop GPUs trigger bottlenecks on mobile GPUs, and show the importance of efficient memory use.Postprin

    High-resolution ex vivo magnetic resonance angiography: a feasibility study on biological and medical tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In biomedical sciences, ex vivo angiography is a practical mean to elucidate vascular structures three-dimensionally with simultaneous estimation of intravascular volume. The objectives of this study were to develop a magnetic resonance (MR) method for ex vivo angiography and to compare the findings with computed tomography (CT). To demonstrate the usefulness of this method, examples are provided from four different tissues and species: the human placenta, a rice field eel, a porcine heart and a turtle.</p> <p>Results</p> <p>The optimal solution for ex vivo MR angiography (MRA) was a compound containing gelatine (0.05 g/mL), the CT contrast agent barium sulphate (0.43 mol/L) and the MR contrast agent gadoteric acid (2.5 mmol/L). It was possible to perform angiography on all specimens. We found that ex vivo MRA could only be performed on fresh tissue because formalin fixation makes the blood vessels permeable to the MR contrast agent.</p> <p>Conclusions</p> <p>Ex vivo MRA provides high-resolution images of fresh tissue and delineates fine structures that we were unable to visualise by CT. We found that MRA provided detailed information similar to or better than conventional CTA in its ability to visualize vessel configuration while avoiding interfering signals from adjacent bones. Interestingly, we found that vascular tissue becomes leaky when formalin-fixed, leading to increased permeability and extravascular leakage of MR contrast agent.</p

    A united statement of the global chiropractic research community against the pseudoscientific claim that chiropractic care boosts immunity.

    Get PDF
    BACKGROUND: In the midst of the coronavirus pandemic, the International Chiropractors Association (ICA) posted reports claiming that chiropractic care can impact the immune system. These claims clash with recommendations from the World Health Organization and World Federation of Chiropractic. We discuss the scientific validity of the claims made in these ICA reports. MAIN BODY: We reviewed the two reports posted by the ICA on their website on March 20 and March 28, 2020. We explored the method used to develop the claim that chiropractic adjustments impact the immune system and discuss the scientific merit of that claim. We provide a response to the ICA reports and explain why this claim lacks scientific credibility and is dangerous to the public. More than 150 researchers from 11 countries reviewed and endorsed our response. CONCLUSION: In their reports, the ICA provided no valid clinical scientific evidence that chiropractic care can impact the immune system. We call on regulatory authorities and professional leaders to take robust political and regulatory action against those claiming that chiropractic adjustments have a clinical impact on the immune system

    Correlations in Finite Fermi Systems - Semiclassics and Shell Structure

    No full text
    This dissertation investigates correlations in finite Fermi systems. The atomic nuclei is the mainly studied system but also other systems, like superconducting metallic grains and cold Fermionic gases are considered. The dissertation comprises of five original papers. Paper I and II investigates the autocorrelation function of the difference between experimental and theoretical nuclear masses. This quantity is found to agree with estimates of Periodic Orbit theory assuming underlying chaotic dynamics. In Paper III and IV a semiclassical theory for the BCS pairing gap is developed. It is found to agree well with experimental data for nuclei. It is also applied to other finite systems, superconducting metallic grains and cold Fermionic gases. Paper V considers an extension of the BCS theory called the Particle Number Projection method. The pairing shell energy is calculated using the Strutinsky method for a large number of nuclei across the nuclear chart. It is found that the BCS and projection methods give very similar results for the pairing shell energy

    Structure of Warm Nuclei

    No full text
    We study the structure of nuclei in the energy region between the ground state and the neutron separation energy, here called warm nuclei. The onset of chaos in the nucleus as excitation energy is increased is briefly reviewed. Chaos implies fluctuations of energies and wave functions qualitatively the same for all chaotic nuclei. On the other hand, large structure effects are seen, e.g. in the level-density function at same excitation energies. A microscopic model for the level density is reviewed and we discuss effects on structure of the total level-density function, parity enhancement, and the spin distribution function. Comparisons to data are performed at the neutron separation energy for all observed nuclei, and structure of the level-density function for a few measured cases. The role of structure effects in the level-density function for fission dynamics is exemplified

    Particle number projection in the macroscopic-microscopic approach

    No full text
    We perform nuclear ground-state pairing calculations with the monopole pairing interaction. The particle number fluctuations are taken into account by the particle number projection method, with variation after projection. The pairing-correction energies obtained in this approach are compared to the BCS-model results. We discuss extensively how to properly incorporate different pairing models in global macroscopic-microscopic nuclear mass calculations. A method to calculate the smoothly changing part of the particle number projected energy is developed based on the Strutinsky procedure, making it possible to extract a pairing-shell energy. The behavior of the different pairing models is investigated in detail in the nuclei Er-164 and Tm-165. Calculations are then performed along the beta-stability line and for several isotope and isotone chains from the proton drip-line to the neutron drip-line. The single-particle energy levels used are obtained from two different single-particle potentials: the folded-Yukawa and the modified-harmonic oscillator potentials. The pairing calculations in the two potentials differ slightly in the fine-structure but the overall results are very similar. When comparing the particle number projected model and the BCS model it is found that the pairing-shell energy is quite insensitive to which microscopic pairing model is used. (c) 2006 Elsevier B.V. All rights reserved

    Chaos and structure of level densities

    No full text
    The energy region of the first few MeV above the ground state shows interesting features of the nucleus. Beyond an ordered energy region just above the ground-state the dynamics changes, and chaotic features are observed in the neutron resonance region. The statistical properties of energies and wave-functions are common to all chaotic nuclei. However, if instead a global property, like the local level-density function is studied, strong structure effects emerge. In this contribution we discuss these two different facets of warm nuclei. In section 2 the onset of chaos with increasing excitation energy is discussed, with both experimental observations and proposed theoretical mechanisms as starting points. The structure of level densities in the same excitation energy region based on the two different starting points, is treated in section 3, where we give a short presentation of a newly developed combinatorial level-density modell. Some results from the model are presented and discussed. Two coexisting facets of warm nuclei, quantum chaos and structure of the level density, are considered. A newly developed combinatorial level-density model is presented, and the role of collective enhancements discussed. An example of extreme parity enhancement is shown
    corecore