583 research outputs found

    Gravitational lensing statistics with extragalactic surveys. II. Analysis of the Jodrell Bank-VLA Astrometric Survey

    Get PDF
    We present constraints on the cosmological constant λ0\lambda_{0} from gravitational lensing statistics of the Jodrell Bank-VLA Astrometric Survey (JVAS). Although this is the largest gravitational lens survey which has been analysed, cosmological constraints are only comparable to those from optical surveys. This is due to the fact that the median source redshifts of JVAS are lower, which leads to both relatively fewer lenses in the survey and a weaker dependence on the cosmological parameters. Although more approximations have to be made than is the case for optical surveys, the consistency of the results with those from optical gravitational lens surveys and other cosmological tests indicate that this is not a major source of uncertainty in the results. However, joint constraints from a combination of radio and optical data are much tighter. Thus, a similar analysis of the much larger Cosmic Lens All-Sky Survey should provide even tighter constraints on the cosmological constant, especially when combined with data from optical lens surveys. At 95% confidence, our lower and upper limits on λ0Ω0\lambda_{0}-\Omega_{0}, using the JVAS lensing statistics information alone, are respectively -2.69 and 0.68. For a flat universe, these correspond to lower and upper limits on \lambda_{0} of respectively -0.85 and 0.84. Using the combination of JVAS lensing statistics and lensing statistics from the literature as discussed in Quast & Helbig (Paper I) the corresponding λ0Ω0\lambda_{0}-\Omega_{0} values are -1.78 and 0.27. For a flat universe, these correspond to lower and upper limits on λ0\lambda_{0} of respectively -0.39 and 0.64.Comment: LaTeX, 9 pages, 18 PostScript files in 6 figures. Paper version available on request. Data available from http://gladia.astro.rug.nl:8000/ceres/data_from_papers/papers.htm

    Lensing galaxies: light or dark?

    Get PDF
    In a recent paper, Hawkins (1997) argues on the basis of statistical studies of double-image gravitational lenses and lens candidates that a large population of dark lenses exists and that these outnumber galaxies with more normal mass-to-light ratios by a factor of 3:1. If correct, this is a very important result for many areas of astronomy including galaxy formation and cosmology. In this paper we discuss our new radio-selected gravitational lens sample, JVAS/CLASS, in order to test and constrain this proposition. We have obtained ground-based and HST images of all multiple-image lens systems in our sample and in 12 cases out of 12 we find the lensing galaxies in the optical and/or near infrared. Our success in finding lensing galaxies creates problems for the dark lens hypothesis. If it is to survive, ad hoc modifications seem to be necessary: only very massive galaxies (more than about one trillion solar masses) can be dark, and the cutoff in mass must be sharp. Our finding of lens galaxies in all the JVAS/CLASS systems is complementary evidence which supports the conclusion of Kochanek et al. (1997) that many of the wide-separation optically-selected pairs are physically distinct quasars rather than gravitational lens systems.Comment: 4 pages, 2 included figures, accepted for publication in Astronomy and Astrophysics. Paper version available on request. This replacement amends the text to allow more discussion of the overlap with astro-ph/971016

    Conservação da umidade do solo em pomar de pessegueiro utilizando cobertura morta de aveia preta.

    Get PDF
    bitstream/CPACT/11047/1/COMUNICADO_136.pd

    Poly-MTO, {(CH_3)_{0.92} Re O_3}_\infty, a Conducting Two-Dimensional Organometallic Oxide

    Get PDF
    Polymeric methyltrioxorhenium, {(CH_{3})_{0.92}ReO_{3}}_{\infty} (poly-MTO), is the first member of a new class of organometallic hybrids which adopts the structural pattern and physical properties of classical perovskites in two dimensions (2D). We demonstrate how the electronic structure of poly-MTO can be tailored by intercalation of organic donor molecules, such as tetrathiafulvalene (TTF) or bis-(ethylendithio)-tetrathiafulvalene (BEDT-TTF), and by the inorganic acceptor SbF3_3. Integration of donor molecules leads to a more insulating behavior of poly-MTO, whereas SbF3_3 insertion does not cause any significant change in the resistivity. The resistivity data of pure poly-MTO is remarkably well described by a two-dimensional electron system. Below 38 K an unusual resistivity behavior, similar to that found in doped cuprates, is observed: The resistivity initially increases approximately as ρ\rho \sim ln(1/T(1/T) before it changes into a T\sqrt{T} dependence below 2 K. As an explanation we suggest a crossover from purely two-dimensional charge-carrier diffusion within the \{ReO2_2\}_{\infty} planes at high temperatures to three-dimensional diffusion at low temperatures in a disorder-enhanced electron-electron interaction scenario (Altshuler-Aronov correction). Furthermore, a linear positive magnetoresistance was found in the insulating regime, which is caused by spatial localization of itinerant electrons at some of the Re atoms, which formally adopt a 5d15d^1 electronic configuration. X-ray diffraction, IR- and ESR-studies, temperature dependent magnetization and specific heat measurements in various magnetic fields suggest that the electronic structure of poly-MTO can safely be approximated by a purely 2D conductor.Comment: 15 pages, 16 figures, 2 table

    Measuring Cosmological Parameters with the JVAS and CLASS Gravitational Lens Surveys

    Get PDF
    The JVAS (Jodrell Bank-VLA Astrometric Survey) and CLASS (Cosmic Lens All-Sky Survey) are well-defined surveys containing about ten thousand flat-spectrum radio sources. For many reasons, flat-spectrum radio sources are particularly well-suited as a population from which one can obtain unbiased samples of gravitational lenses. These are by far the largest gravitational (macro)lens surveys, and particular attention was paid to constructing a cleanly-defined sample for the survey itself and for the underlying luminosity function. Here we present the constraints on cosmological parameters, particularly the cosmological constant, derived from JVAS and combine them with constraints from optical gravitational lens surveys, `direct' measurements of Ω0\Omega_{0}, H0H_{0} and the age of the universe, and constraints derived from CMB anisotropies, before putting this final result into the context of the latest results from other, independent cosmological tests.Comment: LaTeX, 9 pages, 6 PostScript figures, uses texas.sty. To appear in the Proceedings of the 19th Texas Symposium on Relativistic Astrophysics and Cosmology (CD-ROM). Paper version available on request. Actual poster (A0 and A4 versions) available from http://multivac.jb.man.ac.uk:8000/helbig/research/publications/info/ texas98.htm

    CLASS B0827+525: `Dark lens' or binary radio-loud quasar?

    Get PDF
    We present radio, optical, near-infrared and spectroscopic observations of the source B0827+525. We consider this source as the best candidate from the Cosmic Lens All-Sky Survey (CLASS) for a `dark lens' system or binary radio-loud quasar. The system consists of two radio components with somewhat different spectral indices, separated by 2.815 arcsec. VLBA observations show that each component has substructure on a scale of a few mas. A deep K-band exposure with the W.M.Keck-II Telescope reveals emission near both radio components. The K-band emission of the weaker radio component appears extended, whereas the emission from the brighter radio component is consistent with a point source. Hubble Space Telescope F160W-band observations with the NICMOS instrument confirms this. A redshift of 2.064 is found for the brighter component, using the LRIS instrument on the W.M.Keck-II Telescope. The probability that B0827+525 consists of two unrelated compact flat-spectrum radio sources is ~3%, although the presence of similar substructure in both component might reduce this. We discuss two scenarios to explain this system: (i) CLASS B0827+525 is a `dark lens' system or (ii) B0827+525 is a binary radio-loud quasar. B0827+525 has met all criteria that thus far have in 100% of the cases confirmed a source as an indisputable gravitational lens system. Despite this, no lens galaxy has been detected with m_F160W<=23 mag. Hence, we might have found the first binary radio-loud quasar. At this moment, however, we feel that the `dark lens' hypothesis cannot yet be fully excluded.Comment: 9 pages, 6 figures; Accepted for publication in Astronomy & Astrophysics; Full-res. images 1 and 3 can be obtained from L.V.E.

    COMPUTATIONAL MODELING APPLIED TO THE STUDY OF THERMAL BUCKLING OF COLUMNS

    Get PDF
    Buckling is an instability phenomenon that can happen in slender structural components when subjected to a compressive axial load. This phenomenon can occur due to an externally applied force, which when exceed a certain limit, called critical load, will promote the mechanical buckling on the structural member. Another buckling possibility happens to statically indeterminate structural elements when submitted to a positive temperature variation. As the axial displacements are restricted, if the temperature gradient is larger than the critical temperature variation, it will be generated a compressive axial load higher than the critical load of the structural component and the thermal buckling will occur. In this context, the present work presents a computational model to solve the thermal buckling problem of columns. A thin shell finite element, called SHELL93, was adopted for the computational domain discretization. It was employed a solution involving homogeneous algebraic equations, where the critical temperature variation is determined by the smallest eigenvalue and the buckled configuration is defined by its associated eigenvector. A case study was performed considering a steel column with three different support conditions at its ends: fixed-fixed, fixed-pinned, and pinned-pinned. The numerical results obtained for the critical temperature variation showed a maximum absolute difference around 2% when compared to the analytical solutions. Moreover, the buckled shape of the column, for each case, was defined in agreement with the configurations found in literature. Therefore, the computational model was verified, i.e., it is able to satisfactorily predict the mechanical behavior of the thermal buckling of columns. So, it is possible to use this numerical model in practical situations that do not have an analytical solution, as is the case of the thermal buckling of columns with cutouts
    corecore