51 research outputs found
Reference-guided de novo assembly approach improves genome reconstruction for related species.
The development of next-generation sequencing has made it possible to sequence whole genomes at a relatively low cost. However, de novo genome assemblies remain challenging due to short read length, missing data, repetitive regions, polymorphisms and sequencing errors. As more and more genomes are sequenced, reference-guided assembly approaches can be used to assist the assembly process. However, previous methods mostly focused on the assembly of other genotypes within the same species. We adapted and extended a reference-guided de novo assembly approach, which enables the usage of a related reference sequence to guide the genome assembly. In order to compare and evaluate de novo and our reference-guided de novo assembly approaches, we used a simulated data set of a repetitive and heterozygotic plant genome.
The extended reference-guided de novo assembly approach almost always outperforms the corresponding de novo assembly program even when a reference of a different species is used. Similar improvements can be observed in high and low coverage situations. In addition, we show that a single evaluation metric, like the widely used N50 length, is not enough to properly rate assemblies as it not always points to the best assembly evaluated with other criteria. Therefore, we used the summed z-scores of 36 different statistics to evaluate the assemblies.
The combination of reference mapping and de novo assembly provides a powerful tool to improve genome reconstruction by integrating information of a related genome. Our extension of the reference-guided de novo assembly approach enables the application of this strategy not only within but also between related species. Finally, the evaluation of genome assemblies is often not straight forward, as the truth is not known. Thus one should always use a combination of evaluation metrics, which not only try to assess the continuity but also the accuracy of an assembly
Rapid niche expansion by selection on functional genomic variation after ecosystem recovery
It is well recognized that environmental degradation caused by human activities can result in dramatic losses of species and diversity. However, comparatively little is known about the ability of biodiversity to re-emerge following ecosystem recovery. Here, we show that a European whitefish subspecies, the gangfisch Coregonus lavaretus macrophthalmus, rapidly increased its ecologically functional diversity following the restoration of Lake Constance after anthropogenic eutrophication. In fewer than ten generations, gangfisch evolved a greater range of gill raker numbers (GRNs) to utilize a broader ecological niche. A sparse genetic architecture underlies this variation in GRN. Several co-expressed gene modules and genes showing signals of positive selection were associated with GRN and body shape. These were enriched for biological pathways related to trophic niche expansion in fishes. Our findings demonstrate the potential of functional diversity to expand following habitat restoration, given a fortuitous combination of genetic architecture, genetic diversity and selection
Evolution of sex determination and heterogamety changes in section Otites of the genus Silene
Abstract Switches in heterogamety are known to occur in both animals and plants. Although plant sex determination systems probably often evolved more recently than those in several well-studied animals, including mammals, and have had less time for switches to occur, we previously detected a switch in heterogamety in the plant genus Silene: section Otites has both female and male heterogamety, whereas S. latifolia and its close relatives, in a different section of the genus, Melandrium (subgenus Behenantha), all have male heterogamety. Here we analyse the evolution of sex chromosomes in section Otites, which is estimated to have evolved only about 0.55 MYA. Our study confirms female heterogamety in S. otites and newly reveals female heterogamety in S. borysthenica. Sequence analyses and genetic mapping show that the sex-linked regions of these two species are the same, but the region in S. colpophylla, a close relative with male heterogamety, is different. The sex chromosome pairs of S. colpophylla and S. otites each correspond to an autosome of the other species, and both differ from the XY pair in S. latifolia. Silene section Otites species are suitable for detailed studies of the events involved in such changes, and our phylogenetic analysis suggests a possible change from female to male heterogamety within this section. Our analyses suggest a possibility that has so far not been considered, change in heterogamety through hybridization, in which a male-determining chromosome from one species is introgressed into another one, and over-rides its previous sex-determining system
Data from: Estimation of contemporary effective population size and population declines using RAD sequence data
Large genomic datasets generated with restriction-site associated DNA sequencing (RADseq), in combination with demographic inference methods, are improving our ability to gain insights into the population history of species. We used a simulation approach to examine the potential for RADseq datasets to accurately estimate effective population size (Ne) over the course of stable and declining population trends, and we compare the ability of two methods of analysis to accurately distinguish stable from steadily declining populations over a contemporary time scale (20 generations). Using a linkage disequilibrium-based analysis, individual sampling (i.e., n ≥ 30) had the greatest effect on Ne estimation and the detection of population-size declines, with declines reliably detected across scenarios approximately 10 generations after they began. Coalescent-based inference required fewer sampled individuals (i.e., n = 15), and instead was most influenced by the size of the SNP dataset, with 25,000 to 50,000 SNPs required for accurate detection of population trends and at least 20 generations after decline began. The number of samples available and targeted number of RADseq loci are important criteria when choosing between these methods. Neither method suffered any apparent bias due to the effects of allele dropout typical of RAD data. With an understanding of the limitations and biases of these approaches, researchers can make more informed decisions when designing their sampling and analyses. Overall, our results reveal that demographic inference using RADseq data can be successfully applied to infer recent population size change and may be important tools for population monitoring and conservation biology
- …