219 research outputs found

    CRF1-R Activation of the Dynorphin/Kappa Opioid System in the Mouse Basolateral Amygdala Mediates Anxiety-Like Behavior

    Get PDF
    Stress is a complex human experience and having both rewarding and aversive motivational properties. The adverse effects of stress are well documented, yet many of underlying mechanisms remain unclear and controversial. Here we report that the anxiogenic properties of stress are encoded by the endogenous opioid peptide dynorphin acting in the basolateral amygdala. Using pharmacological and genetic approaches, we found that the anxiogenic-like effects of Corticotropin Releasing Factor (CRF) were triggered by CRF1-R activation of the dynorphin/kappa opioid receptor (KOR) system. Central CRF administration significantly reduced the percent open-arm time in the elevated plus maze (EPM). The reduction in open-arm time was blocked by pretreatment with the KOR antagonist norbinaltorphimine (norBNI), and was not evident in mice lacking the endogenous KOR ligand dynorphin. The CRF1-R agonist stressin 1 also significantly reduced open-arm time in the EPM, and this decrease was blocked by norBNI. In contrast, the selective CRF2-R agonist urocortin III did not affect open arm time, and mice lacking CRF2-R still showed an increase in anxiety-like behavior in response to CRF injection. However, CRF2-R knockout animals did not develop CRF conditioned place aversion, suggesting that CRF1-R activation may mediate anxiety and CRF2-R may encode aversion. Using a phosphoselective antibody (KORp) to identify sites of dynorphin action, we found that CRF increased KORp-immunoreactivity in the basolateral amygdala (BLA) of wildtype, but not in mice pretreated with the selective CRF1-R antagonist, antalarmin. Consistent with the concept that acute stress or CRF injection-induced anxiety was mediated by dynorphin release in the BLA, local injection of norBNI blocked the stress or CRF-induced increase in anxiety-like behavior; whereas norBNI injection in a nearby thalamic nucleus did not. The intersection of stress-induced CRF and the dynorphin/KOR system in the BLA was surprising, and these results suggest that CRF and dynorphin/KOR systems may coordinate stress-induced anxiety behaviors and aversive behaviors via different mechanisms

    The oxytocin analogue carbetocin prevents emotional impairment and stress-induced reinstatement of opioid-seeking in morphine-abstinent mice.

    Get PDF
    The main challenge in treating opioid addicts is to maintain abstinence due to the affective consequences associated with withdrawal which may trigger relapse. Emerging evidence suggests a role of the neurohypophysial peptide oxytocin (OT) in the modulation of mood disorders as well as drug addiction. However, its involvement in the emotional consequences of drug abstinence remains unclear. We investigated the effect of 7-day opioid abstinence on the oxytocinergic system and assessed the effect of the OT analogue carbetocin (CBT) on the emotional consequences of opioid abstinence, as well as relapse. Male C57BL/6J mice were treated with a chronic escalating-dose morphine regimen (20-100 mg/kg/day, i.p.). Seven days withdrawal from this administration paradigm induced a decrease of hypothalamic OT levels and a concomitant increase of oxytocin receptor (OTR) binding in the lateral septum and amygdala. Although no physical withdrawal symptoms or alterations in the plasma corticosterone levels were observed after 7 days of abstinence, mice exhibited increased anxiety-like and depressive-like behaviors and impaired sociability. CBT (6.4 mg/kg, i.p.) attenuated the observed negative emotional consequences of opioid withdrawal. Furthermore, in the conditioned place preference paradigm with 10 mg/kg morphine conditioning, CBT (6.4 mg/kg, i.p.) was able to prevent the stress-induced reinstatement to morphine-seeking following extinction. Overall, our results suggest that alterations of the oxytocinergic system contribute to the mechanisms underlying anxiety, depression, and social deficits observed during opioid abstinence. This study also highlights the oxytocinergic system as a target for developing pharmacotherapy for the treatment of emotional impairment associated with abstinence and thereby prevention of relapse

    Identification of early changes in specific symptoms that predict longer-term response to atypical antipsychotics in the treatment of patients with schizophrenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To identify a simple decision tree using early symptom change to predict response to atypical antipsychotic therapy in patients with (Diagnostic and Statistical Manual, Fourth Edition, Text Revised) chronic schizophrenia.</p> <p>Methods</p> <p>Data were pooled from moderately to severely ill patients (n = 1494) from 6 randomized, double-blind trials (N = 2543). Response was defined as a ≥30% reduction in Positive and Negative Syndrome Scale (PANSS) Total score by Week 8 of treatment. Analyzed predictors were change in individual PANSS items at Weeks 1 and 2. A decision tree was constructed using classification and regression tree (CART) analysis to identify predictors that most effectively differentiated responders from non-responders.</p> <p>Results</p> <p>A 2-branch, 6-item decision tree was created, producing 3 distinct groups. First branch criterion was a 2-point score decrease in at least 2 of 5 PANSS positive items (Week 2). Second branch criterion was a 2-point score decrease in the PANSS excitement item (Week 2). "Likely responders" met the first branch criteria; "likely non-responders" did not meet first or second criterion; "not predictable" patients did not meet the first but did meet the second criterion. Using this approach, response to treatment could be predicted in most patients (92%) with high positive predictive value (79%) and high negative predictive value (75%). Predictive findings were confirmed through analysis of data from 2 independent trials.</p> <p>Conclusions</p> <p>Using a data-driven approach, we identified decision rules using early change in the scores of selected PANSS items to accurately predict longer-term treatment response or non-response to atypical antipsychotic therapy. This could lead to development of a simple quantitative evaluation tool to help guide early treatment decisions.</p> <p>Trial Registration</p> <p>This is a retrospective, non-intervention study in which pooled results from 6 previously published reports were analyzed; thus, clinical trial registration is not required.</p

    Orally Available Selective Melanocortin-4 Receptor Antagonists Stimulate Food Intake and Reduce Cancer-Induced Cachexia in Mice

    Get PDF
    BACKGROUND: Cachexia is among the most debilitating and life-threatening aspects of cancer. It represents a metabolic syndrome affecting essential functional circuits involved in the regulation of homeostasis, and includes anorexia, fat and muscle tissue wasting. The anorexigenic peptide alpha-MSH is believed to be crucially involved in the normal and pathologic regulation of food intake. It was speculated that blockade of its central physiological target, the melanocortin (MC)-4 receptor, might provide a promising anti-cachexia treatment strategy. This idea is supported by the fact that in animal studies, agouti-related protein (AgRP), the endogenous inverse agonist at the MC-4 receptor, was found to affect two hallmark features of cachexia, i.e. to increase food intake and to reduce energy expenditure. METHODOLOGY/PRINCIPAL FINDINGS: SNT207707 and SNT209858 are two recently discovered, non peptidic, chemically unrelated, orally active MC-4 receptor antagonists penetrating the blood brain barrier. Both compounds were found to distinctly increase food intake in healthy mice. Moreover, in mice subcutaneously implanted with C26 adenocarcinoma cells, repeated oral administration (starting the day after tumor implantation) of each of the two compounds almost completely prevented tumor induced weight loss, and diminished loss of lean body mass and fat mass. CONCLUSIONS/SIGNIFICANCE: In contrast to the previously reported peptidic and small molecule MC-4 antagonists, the compounds described here work by the oral administration route. Orally active compounds might offer a considerable advantage for the treatment of cachexia patients

    Desipramine Inhibits Histamine H1 Receptor-Induced Ca2+ Signaling in Rat Hypothalamic Cells

    Get PDF
    The hypothalamus in the brain is the main center for appetite control and integrates signals from adipose tissue and the gastrointestinal tract. Antidepressants are known to modulate the activities of hypothalamic neurons and affect food intake, but the cellular and molecular mechanisms by which antidepressants modulate hypothalamic function remain unclear. Here we have investigated how hypothalamic neurons respond to treatment with antidepressants, including desipramine and sibutramine. In primary cultured rat hypothalamic cells, desipramine markedly suppressed the elevation of intracellular Ca2+ evoked by histamine H1 receptor activation. Desipramine also inhibited the histamine-induced Ca2+ increase and the expression of corticotrophin-releasing hormone in hypothalamic GT1-1 cells. The effect of desipramine was not affected by pretreatment with prazosin or propranolol, excluding catecholamine reuptake activity of desipramine as an underlying mechanism. Sibutramine which is also an antidepressant but decreases food intake, had little effect on the histamine-induced Ca2+ increase or AMP-activated protein kinase activity. Our results reveal that desipramine and sibutramine have different effects on histamine H1 receptor signaling in hypothalamic cells and suggest that distinct regulation of hypothalamic histamine signaling might underlie the differential regulation of food intake between antidepressants

    The effects of CRF antagonists, antalarmin, CP154,526, LWH234, and R121919, in the forced swim test and on swim-induced increases in adrenocorticotropin in rats

    Full text link
    Exposure to extreme stress has been suggested to produce long-term, detrimental alterations in the hypothalamic–pituitary–adrenal (HPA) axis leading to the development of mental disorders such as depression. Therefore, compounds that block the effects of stress hormones were investigated as potential therapeutics for depression.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46365/1/213_2005_Article_2164.pd

    Global Changes in Staphylococcus aureus Gene Expression in Human Blood

    Get PDF
    Staphylococcus aureus is a leading cause of bloodstream infections worldwide. In the United States, many of these infections are caused by a strain known as USA300. Although progress has been made, our understanding of the S. aureus molecules that promote survival in human blood and ultimately facilitate metastases is incomplete. To that end, we analyzed the USA300 transcriptome during culture in human blood, human serum, and trypticase soy broth (TSB), a standard laboratory culture media. Notably, genes encoding several cytolytic toxins were up-regulated in human blood over time, and hlgA, hlgB, and hlgC (encoding gamma-hemolysin subunits HlgA, HlgB, and HlgC) were among the most highly up-regulated genes at all time points. Compared to culture supernatants from a wild-type USA300 strain (LAC), those derived from an isogenic hlgABC-deletion strain (LACΔhlgABC) had significantly reduced capacity to form pores in human neutrophils and ultimately cause neutrophil lysis. Moreover, LACΔhlgABC had modestly reduced ability to cause mortality in a mouse bacteremia model. On the other hand, wild-type and LACΔhlgABC strains caused virtually identical abscesses in a mouse skin infection model, and bacterial survival and neutrophil lysis after phagocytosis in vitro was similar between these strains. Comparison of the cytolytic capacity of culture supernatants from wild-type and isogenic deletion strains lacking hlgABC, lukS/F-PV (encoding PVL), and/or lukDE revealed functional redundancy among two-component leukotoxins in vitro. These findings, along with a requirement of specific growth conditions for leukotoxin expression, may explain the apparent limited contribution of any single two-component leukotoxin to USA300 immune evasion and virulence

    Mapping and Imaging the Aggressive Brain in Animals and Humans

    Get PDF
    corecore