1,660 research outputs found

    Duty and Distance

    Get PDF
    Ever since the publication of Peter Singer’s article ‘‘Famine, Affluence, and Morality’’ has the question of whether the (geographical) distance to people in need affects our moral duties towards them been a hotly debated issue. Does geographical distance affect our moral duties? If so, is it of direct moral importance? Or is it of indirect importance to other aspects that affect our moral duties, such as our power to help other people

    NVU dynamics. I. Geodesic motion on the constant-potential-energy hypersurface

    Get PDF
    An algorithm is derived for computer simulation of geodesics on the constant potential-energy hypersurface of a system of N classical particles. First, a basic time-reversible geodesic algorithm is derived by discretizing the geodesic stationarity condition and implementing the constant potential energy constraint via standard Lagrangian multipliers. The basic NVU algorithm is tested by single-precision computer simulations of the Lennard-Jones liquid. Excellent numerical stability is obtained if the force cutoff is smoothed and the two initial configurations have identical potential energy within machine precision. Nevertheless, just as for NVE algorithms, stabilizers are needed for very long runs in order to compensate for the accumulation of numerical errors that eventually lead to "entropic drift" of the potential energy towards higher values. A modification of the basic NVU algorithm is introduced that ensures potential-energy and step-length conservation; center-of-mass drift is also eliminated. Analytical arguments confirmed by simulations demonstrate that the modified NVU algorithm is absolutely stable. Finally, simulations show that the NVU algorithm and the standard leap-frog NVE algorithm have identical radial distribution functions for the Lennard-Jones liquid

    Theories of Fairness and Aggregation

    Get PDF
    We investigate the issue of aggregativity in fair division problems from the perspective of cooperative game theory and Broomean theories of fairness. Paseau and Saunders (Utilitas 27:460–469, 2015) proved that no non-trivial theory of fairness can be aggregative and conclude that theories of fairness are therefore problematic, or at least incomplete. We observe that there are theories of fairness, particularly those that are based on cooperative game theory, that do not face the problem of non-aggregativity. We use this observation to argue that the universal claim that no non-trivial theory of fairness can guarantee aggregativity is false. Paseau and Saunders’s mistaken assertion can be understood as arising from a neglect of the (cooperative) games approach to fair division. Our treatment has two further pay-offs: for one, we give an accessible introduction to the (cooperative) games approach to fair division, whose significance has hitherto not been appreciated by philosophers working on fairness. For another, our discussion explores the issue of aggregativity in fair division problems in a comprehensive fashion

    How to be fairer

    Get PDF
    We confront the philosophical literature on fair division problems with axiomatic and game-theoretic work in economics. Firstly, we show that the proportionality method advocated in Curtis (in Analysis 74:417–57, 2014) is not implied by a general principle of fairness, and that the proportional rule cannot be explicated axiomatically from that very principle. Secondly, we suggest that Broome’s (in Proc Aristot Soc 91:87–101, 1990) notion of claims is too restrictive and that game-theoretic approaches can rectify this shortcoming. More generally, we argue that axiomatic and game-theoretic work in economics is an indispensable ingredient of any theorizing about fair division problems and allocative justice

    Entropy-driven phase transition in a polydisperse hard-rods lattice system

    Full text link
    We study a system of rods on the 2d square lattice, with hard-core exclusion. Each rod has a length between 2 and N. We show that, when N is sufficiently large, and for suitable fugacity, there are several distinct Gibbs states, with orientational long-range order. This is in sharp contrast with the case N=2 (the monomer-dimer model), for which Heilmann and Lieb proved absence of phase transition at any fugacity. This is the first example of a pure hard-core system with phases displaying orientational order, but not translational order; this is a fundamental characteristic feature of liquid crystals

    Matchings on infinite graphs

    Full text link
    Elek and Lippner (2010) showed that the convergence of a sequence of bounded-degree graphs implies the existence of a limit for the proportion of vertices covered by a maximum matching. We provide a characterization of the limiting parameter via a local recursion defined directly on the limit of the graph sequence. Interestingly, the recursion may admit multiple solutions, implying non-trivial long-range dependencies between the covered vertices. We overcome this lack of correlation decay by introducing a perturbative parameter (temperature), which we let progressively go to zero. This allows us to uniquely identify the correct solution. In the important case where the graph limit is a unimodular Galton-Watson tree, the recursion simplifies into a distributional equation that can be solved explicitly, leading to a new asymptotic formula that considerably extends the well-known one by Karp and Sipser for Erd\"os-R\'enyi random graphs.Comment: 23 page
    • …
    corecore