3,334 research outputs found
Relic Abundance of Asymmetric Dark Matter
We investigate the relic abundance of asymmetric Dark Matter particles that
were in thermal equilibrium in the early universe. The standard analytic
calculation of the symmetric Dark Matter is generalized to the asymmetric case.
We calculate the asymmetry required to explain the observed Dark Matter relic
abundance as a function of the annihilation cross section. We show that
introducing an asymmetry always reduces the indirect detection signal from WIMP
annihilation, although it has a larger annihilation cross section than
symmetric Dark Matter. This opens new possibilities for the construction of
realistic models of MeV Dark Matter.Comment: 20 pages, 11 figures, Accepted by JCA
Single Proton Knock-Out Reactions from 24,25,26F
The cross sections of the single proton knock-out reactions from 24F, 25F,
and 26F on a 12C target were measured at energies of about 50 MeV/nucleon.
Ground state populations of 6.6+-.9 mb, 3.8+-0.6 mb for the reactions
12C(24F,23O) and 12C(25F,24O) were extracted, respectively. The data were
compared to calculations based on the many-body shell model and the eikonal
theory. In the reaction 12C(26F,25O) the particle instability of 25O was
confirmed
Observation of the Halo of NGC 3077 Near the "Garland" Region Using the Hubble Space Telescope
We report the detection of upper main sequence stars and red giant branch
stars in the halo of an amorphous galaxy, NGC3077. The observations were made
using Wide Field Planetary Camera~2 on board the Hubble Space Telescope. The
red giant branch luminosity function in I-band shows a sudden discontinuity at
I = 24.0 +- 0.1 mag. Identifying this with the tip of the red giant branch
(TRGB), and adopting the calibration provided by Lee, Freedman, & Madore (1993)
and the foreground extinction of A_B = 0.21 mag, we obtain a distance modulus
of (m-M)_0 = 27.93 +- 0.14(random) +- 0.16(sys). This value agrees well with
the distance estimates of four other galaxies in the M81 Group. In addition to
the RGB stars, we observe a concentration of upper main sequence stars in the
halo of NGC3077, which coincides partially with a feature known as the
``Garland''. Using Padua isochrones, these stars are estimated to be <150 Myrs
old. Assuming that the nearest encounter between NGC3077 and M81 occurred 280
Myrs ago as predicted by the numerical simulations (Yun 1997), the observed
upper main sequence stars are likely the results of the star formation
triggered by the M81-NGC3077 tidal interaction.Comment: 15 pages, 8 figures. Accepted for publication in Astrophysical
Journa
The Nuclear and Circum-nuclear Stellar Population in Seyfert 2 Galaxies: Implications for the Starburst-AGN Connection
We report the results of a spectroscopic investigation of a sample of 20 of
the brightest type 2 Seyfert nuclei. Our goal is to search for the direct
spectroscopic signature of massive stars, and thereby probe the role of
circumnuclear starbursts in the Seyfert phenomenon. The method used is based on
the detection of the higher order Balmer lines and HeI lines in absorption and
the Wolf-Rayet feature at 4680 \AA in emission. These lines are strong
indicators of the presence of young (a few Myrs) and intermediate-age (a few
100 Myrs) stellar populations. In over half the sample, we have detected HeI
and/or strong stellar absorption features in the high-order (near-UV) Balmer
series together with relatively weak lines from an old stellar population. In
three others we detect a broad emission feature near 4680 \AA that is most
plausibly ascribed to a population of Wolf-Rayet stars (the evolved descendants
of the most massive stars). We therefore conclude that the blue and near-UV
light of over half of the sample is dominated by young and/or intermediate age
stars. The ``young'' Seyfert 2's have have larger far-IR luminosities, cooler
mid/far-IR colors, and smaller [OIII]/H flux ratios than the ``old''
ones. These differences are consistent with a starburst playing a significant
energetic role in the former class. We consider the possibility that there may
be two distinct sub-classes of Seyfert 2 nuclei (``starbursts'' and ``hidden
BLR''). However, the fact that hidden BLRs have been found in three of the
``young'' nuclei argues against this, and suggests that nuclear starbursts may
be a more general part of the Seyfert phenomenon.Comment: To be published in ApJ, 546, Jan 10, 200
On Global Flipped SU(5) GUTs in F-theory
We construct an SU(4) spectral divisor and its factorization of types (3,1)
and (2,2) based on the construction proposed in [1]. We calculate the chiral
spectra of flipped SU(5) GUTs by using the spectral divisor construction. The
results agree with those from the analysis of semi-local spectral covers. Our
computations provide an example for the validity of the spectral divisor
construction and suggest that the standard heterotic formulae are applicable to
the case of F-theory on an elliptically fibered Calabi-Yau fourfold with no
heterotic dual.Comment: 45 pages, 12 tables, 1 figure; typos corrected, footnotes added, and
a reference adde
Wage returns to university disciplines in Greece: are Greek Higher Education degrees Trojan Horses?
This paper examines the wage returns to qualifications and academic disciplines in the Greek labour market. Exploring wage responsiveness across various degree subjects in Greece is interesting, as it is characterised by high levels of graduate unemployment, which vary considerably by field of study, and relatively low levels of wage flexibility. Using micro-data from recently available waves (2002-2003) of the Greek Labour Force Survey (LFS), the returns to academic disciplines are estimated by gender and public/private sector. Quantile regressions and cohort interactions are also used to capture the heterogeneity in wage returns across the various disciplines. The results show considerable variation in wage premiums across the fields of study, with lower returns for those that have a marginal role to play in an economy with a rising services/shrinking public sector. Educational reforms that pay closer attention to the future prospects of university disciplines are advocated
Flipped SU(5) GUTs from E_8 Singularities in F-theory
In this paper we construct supersymmetric flipped SU(5) GUTs from E_8
singularities in F-theory. We start from an SO(10) singularity unfolded from an
E_8 singularity by using an SU(4) spectral cover. To obtain realistic models,
we consider (3,1) and (2,2) factorizations of the SU(4) cover. After turning on
the massless U(1)_X gauge flux, we obtain the SU(5) X U(1)_X gauge group. Based
on the well-studied geometric backgrounds in the literature, we demonstrate
several models and discuss their phenomenology.Comment: 46 pages, 23 tables, 1 figure, typos corrected, references added, and
new examples presente
Pairing effect on the giant dipole resonance width at low temperature
The width of the giant dipole resonance (GDR) at finite temperature T in
Sn-120 is calculated within the Phonon Damping Model including the neutron
thermal pairing gap determined from the modified BCS theory. It is shown that
the effect of thermal pairing causes a smaller GDR width at T below 2 MeV as
compared to the one obtained neglecting pairing. This improves significantly
the agreement between theory and experiment including the most recent data
point at T = 1 MeV.Comment: 8 pages, 5 figures to be published in Physical Review
Oxygen Metallicity Determinations from Optical Emission Lines in Early-type Galaxies
We measured the oxygen abundances of the warm (T) phase of gas
in seven early-type galaxies through long-slit observations. A template spectra
was constructed from galaxies void of warm gas and subtracted from the
emission-line galaxies, allowing for a clean measurement of the nebular lines.
The ratios of the emission lines are consistent with photoionization, which
likely originates from the UV flux of post-asymototic giant branch (PAGB)
stars. We employ H II region photoionization models to determine a mean oxygen
metallicity of solar for the warm interstellar medium (ISM) in
this sample. This warm ISM 0.5 to 1.5 solar metallicity is consistent with
modern determinations of the metallicity in the hot (T)
ISM and the upper range of this warm ISM metallicity is consistent with stellar
population metallicity determinations. A solar metallicity of the warm ISM
favors an internal origin for the warm ISM such as AGB mass loss within the
galaxy.Comment: Accepted Astrophysical Journa
- …