120 research outputs found

    Low phospholipid associated cholelithiasis: association with mutation in the MDR3/ABCB4 gene

    Get PDF
    Low phospholipid-associated cholelithiasis (LPAC) is characterized by the association of ABCB4 mutations and low biliary phospholipid concentration with symptomatic and recurring cholelithiasis. This syndrome is infrequent and corresponds to a peculiar small subgroup of patients with symptomatic gallstone disease. The patients with the LPAC syndrome present typically with the following main features: age less than 40 years at onset of symptoms, recurrence of biliary symptoms after cholecystectomy, intrahepatic hyperechoic foci or sludge or microlithiasis along the biliary tree. Defect in ABCB4 function causes the production of bile with low phospholipid content, increased lithogenicity and high detergent properties leading to bile duct luminal membrane injuries and resulting in cholestasis with increased serum gamma-glutamyltransferase (GGT) activity. Intrahepatic gallstones may be evidenced by ultrasonography (US), computing tomography (CT) abdominal scan or magnetic resonance cholangiopancreatography, intrahepatic hyperechogenic foci along the biliary tree may be evidenced by US, and hepatic bile composition (phospholipids) may be determined by duodenoscopy. In all cases where the ABCB4 genotyping confirms the diagnosis of LPAC syndrome in young adults, long-term curative or prophylactic therapy with ursodeoxycholic acid (UDCA) should be initiated early to prevent the occurrence or recurrence of the syndrome and its complications. Cholecystectomy is indicated in the case of symptomatic gallstones. Biliary drainage or partial hepatectomy may be indicated in the case of symptomatic intrahepatic bile duct dilatations filled with gallstones. Patients with end-stage liver disease may be candidates for liver transplantation

    Serum Islet Cell Autoantibodies During Interferon Ξ± Treatment in Patients With HCV-Genotype 4 Chronic Hepatitis

    Get PDF
    Chronic hepatitis C virus (HCV) infection is a leading cause of end-stage liver disease worldwide and HCV genotype 4 (HCV4) is predominant in African and Middle Eastern countries. It is well established that interferon-Ξ± (IFNa) treatment for HCV may trigger serum autoantibodies against pancreatic islet cells (ICA) in a subgroup of patients. Available data on the incidence of ICA during IFNa therapy for chronic HCV4 infection are not conclusive. We investigated the appearance of ICA in 40 naΓ―ve Egyptian patients (38 males, 32 Β± 6 years) with histologically defined chronic HCV4 infection undergoing IFNa treatment at a dose of 9-million U/week for 24 weeks. Serum samples were collected at baseline and following IFNa therapy and ICA were detected using indirect immunofluorescence. Baseline evaluation indicated that 2/40 (5%) patients had detectable serum ICA. After the completion of the treatment scheme, 12/38 (32%) previously ICA negative patients became ICA positive; however, no patient developed impaired glucose tolerance (IGT) or diabetes during follow-up. In conclusion, we submit that IFNa treatment for chronic hepatitis C (CHC) may induce serum ICA in one-third of Egyptian patients with HCV4. These autoantibodies, however, do not lead to alterations in glucose metabolism

    Effects of common haplotypes of the ileal sodium dependent bile acid transporter gene on the development of sporadic and familial colorectal cancer: A case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genetics of sporadic and non-syndromic familial colorectal cancer (CRC) is not well defined. However, genetic factors that promote the development of precursor lesions, i.e. adenomas, might also predispose to CRC. Recently, an association of colorectal adenoma with two variants (c.507C>T;p.L169L and c.511G>T;p.A171S) of the ileal sodium dependent bile acid transporter gene (<it>SLC10A2</it>) has been reported. Here, we reconstructed haplotypes of the <it>SLC10A2 </it>gene locus and tested for association with non-syndromic familial and sporadic CRC compared to 'hyper-normal' controls who displayed no colorectal polyps on screening colonoscopy.</p> <p>Methods</p> <p>We included 150 patients with sporadic CRC, 93 patients with familial CRC but exclusion of familial adenomatous polyposis and Lynch's syndrome, and 204 'hyper-normal' controls. Haplotype-tagging <it>SLC10A2 </it>gene variants were identified in the Hapmap database and genotyped using PCR-based 5' exonuclease assays with fluorescent dye-labelled probes. Haplotypes were reconstructed using the PHASE algorithm. Association testing was performed with both SNPs and reconstructed haplotypes.</p> <p>Results</p> <p>Minor allele frequencies of all <it>SLC10A2 </it>polymorphisms are within previously reported ranges, and no deviations from Hardy-Weinberg equilibrium are observed. However, we found no association with any of the <it>SLC10A2 </it>haplotypes with sporadic or familial CRC in our samples (all P values > 0.05).</p> <p>Conclusion</p> <p>Common variants of the <it>SLC10A2 </it>gene are not associated with sporadic or familial CRC. Hence, albeit this gene might be associated with early stages of colorectal neoplasia, it appears not to represent a major risk factor for progression to CRC.</p

    Functional Contribution of Elevated Circulating and Hepatic Non-Classical CD14+CD16+ Monocytes to Inflammation and Human Liver Fibrosis

    Get PDF
    BACKGROUND: Monocyte-derived macrophages critically perpetuate inflammatory responses after liver injury as a prerequisite for organ fibrosis. Experimental murine models identified an essential role for the CCR2-dependent infiltration of classical Gr1/Ly6C(+) monocytes in hepatic fibrosis. Moreover, the monocyte-related chemokine receptors CCR1 and CCR5 were recently recognized as important fibrosis modulators in mice. In humans, monocytes consist of classical CD14(+)CD16(-) and non-classical CD14(+)CD16(+) cells. We aimed at investigating the relevance of monocyte subpopulations for human liver fibrosis, and hypothesized that 'non-classical' monocytes critically exert inflammatory as well as profibrogenic functions in patients during liver disease progression. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed circulating monocyte subsets from freshly drawn blood samples of 226 patients with chronic liver disease (CLD) and 184 healthy controls by FACS analysis. Circulating monocytes were significantly expanded in CLD-patients compared to controls with a marked increase of the non-classical CD14(+)CD16(+) subset that showed an activated phenotype in patients and correlated with proinflammatory cytokines and clinical progression. Correspondingly, CD14(+)CD16(+) macrophages massively accumulated in fibrotic/cirrhotic livers, as evidenced by immunofluorescence and FACS. Ligands of monocyte-related chemokine receptors CCR2, CCR1 and CCR5 were expressed at higher levels in fibrotic and cirrhotic livers, while CCL3 and CCL4 were also systemically elevated in CLD-patients. Isolated monocyte/macrophage subpopulations were functionally characterized regarding cytokine/chemokine expression and interactions with primary human hepatic stellate cells (HSC) in vitro. CD14(+)CD16(+) monocytes released abundant proinflammatory cytokines. Furthermore, CD14(+)CD16(+), but not CD14(+)CD16(-) monocytes could directly activate collagen-producing HSC. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate the expansion of CD14(+)CD16(+) monocytes in the circulation and liver of CLD-patients upon disease progression and suggest their functional contribution to the perpetuation of intrahepatic inflammation and profibrogenic HSC activation in liver cirrhosis. The modulation of monocyte-subset recruitment into the liver via chemokines/chemokine receptors and their subsequent differentiation may represent promising approaches for therapeutic interventions in human liver fibrosis

    Interleukin-8 Is Activated in Patients with Chronic Liver Diseases and Associated with Hepatic Macrophage Accumulation in Human Liver Fibrosis

    Get PDF
    BACKGROUND: Interleukin-8 (IL-8, CXCL8) is a potent chemoattractant for neutrophils and contributes to acute liver inflammation. Much less is known about IL-8 in chronic liver diseases (CLD), but elevated levels were reported from alcoholic and hepatitis C-related CLD. We investigated the regulation of IL-8, its receptors CXCR1 and CXCR2 and possible IL-8 responding cells in CLD patients. METHODOLOGY: Serum IL-8 levels were measured in CLD patients (nβ€Š=β€Š200) and healthy controls (nβ€Š=β€Š141). Intrahepatic IL-8, CXCR1 and CXCR2 gene expression was quantified from liver samples (nβ€Š=β€Š41), alongside immunohistochemical neutrophil (MPO) and macrophage (CD68) stainings. CXCR1 and CXCR2 expression was analyzed on purified monocytes from patients (nβ€Š=β€Š111) and controls (nβ€Š=β€Š31). In vitro analyses explored IL-8 secretion by different leukocyte subsets. PRINCIPAL FINDINGS: IL-8 serum levels were significantly increased in CLD patients, especially in end-stage cirrhosis. Interestingly, patients with cholestatic diseases exhibited highest IL-8 serum concentrations. IL-8 correlated with liver function, inflammatory cytokines and non-invasive fibrosis markers. Intrahepatically, IL-8 and CXCR1 expression were strongly up-regulated. However, intrahepatic IL-8 could only be associated to neutrophil infiltration in patients with primary biliary cirrhosis (PBC). In non-cholestatic cirrhosis, increased IL-8 and CXCR1 levels were associated with hepatic macrophage accumulation. In line, CXCR1, but not CXCR2 or CXCR3, expression was increased on circulating monocytes from cirrhotic patients. Moreover, monocyte-derived macrophages from CLD patients, especially the non-classical CD16⁺ subtype, displayed enhanced IL-8 secretion in vitro. CONCLUSIONS: IL-8 is strongly activated in CLD, thus likely contributing to hepatic inflammation. Our study suggests a novel role of IL-8 for recruitment and activation of hepatic macrophages via CXCR1 in human liver cirrhosis

    Human Amniotic Epithelial Cell Transplantation Induces Markers of Alternative Macrophage Activation and Reduces Established Hepatic Fibrosis

    Get PDF
    Chronic hepatic inflammation from multiple etiologies leads to a fibrogenic response that can progress to cirrhosis and liver failure. Transplantation of human amniotic epithelial cells (hAEC) from term delivered placenta has been shown to decrease mild to moderate hepatic fibrosis in a murine model. To model advanced human liver disease and assess the efficacy of hAEC therapy, we transplanted hAEC in mice with advanced hepatic fibrosis. Immunocompetent C57BL/6 mice were administered carbon tetrachloride (CCl4) twice weekly resulting in bridging fibrosis by 12 weeks. hAEC (2Γ—106) were infused via the tail vein at week 8 or weeks 8 and 10 (single and double dose, respectively). Human cells were detected in mouse liver four weeks after transplantation showing hAEC engraftment. CCl4 treated mice receiving single or double hAEC doses showed a significant but similar decrease in liver fibrosis area associated with decreased activation of collagen-producing hepatic stellate cells and decreased hepatic protein levels of the pro-fibrogenic cytokine, transforming growth factor-beta1. CCl4 administration caused hepatic T cell infiltration that decreased significantly following hAEC transplantation. Hepatic macrophages play a crucial role in both fibrogenesis and fibrosis resolution. Mice exposed to CCl4 demonstrated increased numbers of hepatic macrophages compared to normal mice; the number of macrophages decreased significantly in CCl4 treated mice given hAEC. These mice had significantly lower hepatic protein levels of the chemokine monocyte chemoattractant protein-1 than mice given CCl4 alone. Alternatively activated M2 macrophages are associated with fibrosis resolution. CCl4 treated mice given hAEC showed increased expression of genes associated with M2 macrophages including YM-1, IL-10 and CD206. We provide novel data showing that hAEC transplantation induces a wound healing M2 macrophage phenotype associated with reduction of established hepatic fibrosis that justifies further investigation of this potential cell-based therapy for advanced hepatic fibrosis

    Hepatitis C Virus Infection Suppresses the Interferon Response in the Liver of the Human Hepatocyte Chimeric Mouse

    Get PDF
    BACKGROUND AND AIMS: Recent studies indicate that hepatitis C virus (HCV) can modulate the expression of various genes including those involved in interferon signaling, and up-regulation of interferon-stimulated genes by HCV was reported to be strongly associated with treatment outcome. To expand our understanding of the molecular mechanism underlying treatment resistance, we analyzed the direct effects of interferon and/or HCV infection under immunodeficient conditions using cDNA microarray analysis of human hepatocyte chimeric mice. METHODS: Human serum containing HCV genotype 1b was injected into human hepatocyte chimeric mice. IFN-Ξ± was administered 8 weeks after inoculation, and 6 hours later human hepatocytes in the mouse livers were collected for microarray analysis. RESULTS: HCV infection induced a more than 3-fold change in the expression of 181 genes, especially genes related to Organismal Injury and Abnormalities, such as fibrosis or injury of the liver (Pβ€Š=β€Š5.90E-16∼3.66E-03). IFN administration induced more than 3-fold up-regulation in the expression of 152 genes. Marked induction was observed in the anti-fibrotic chemokines such as CXCL9, suggesting that IFN treatment might lead not only to HCV eradication but also prevention and repair of liver fibrosis. HCV infection appeared to suppress interferon signaling via significant reduction in interferon-induced gene expression in several genes of the IFN signaling pathway, including Mx1, STAT1, and several members of the CXCL and IFI families (Pβ€Š=β€Š6.0E-12). Genes associated with Antimicrobial Response and Inflammatory Response were also significantly repressed (Pβ€Š=β€Š5.22Γ—10(-10)∼1.95Γ—10(-2)). CONCLUSIONS: These results provide molecular insights into possible mechanisms used by HCV to evade innate immune responses, as well as novel therapeutic targets and a potential new indication for interferon therapy
    • …
    corecore