86 research outputs found

    The Oslo Health Study: Is bone mineral density higher in affluent areas?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Based on previously reported differences in fracture incidence in the socioeconomic less affluent Oslo East compared to the more privileged West, our aim was to study bone mineral density (BMD) in the same socioeconomic areas in Oslo. We also wanted to study whether possible associations were explained by socio-demographic factors, level of education or lifestyle factors.</p> <p>Methods</p> <p>Distal forearm BMD was measured in random samples of the participants in The Oslo Health Study by single energy x-ray absorptiometry (SXA). 578 men and 702 women born in Norway in the age-groups 40/45, 60 and 75 years were included in the analyses. Socioeconomic regions, based on a social index dividing Oslo in two regions – East and West, were used.</p> <p>Results</p> <p>Age-adjusted mean BMD in women living in the less affluent Eastern region was 0.405 g/cm<sup>2 </sup>and significantly lower than in West where BMD was 0.419 g/cm<sup>2</sup>. Similarly, the odds ratio of low BMD (Z-score ≤ -1) was 1.87 (95% CI: 1.22–2.87) in women in Oslo East compared to West. The same tendency, although not statistically significant, was also present in men. Multivariate analysis adjusted for education, marital status, body mass index, physical inactivity, use of alcohol and smoking, and in women also use of post-menopausal hormone therapy and early onset of menopause, did hardly change the association. Additional adjustments for employment status, disability pension and physical activity at work for those below the age of retirement, gave similar results.</p> <p>Conclusion</p> <p>We found differences in BMD in women between different socioeconomic regions in Oslo that correspond to previously found differences in fracture rates. The association in men was not statistically significant. The differences were not explained by socio-demographic factors, level of education or lifestyle factors.</p

    A Genome-Wide Linkage Scan for Distinct Subsets of Schizophrenia Characterized by Age at Onset and Neurocognitive Deficits

    Get PDF
    As schizophrenia is genetically and phenotypically heterogeneous, targeting genetically informative phenotypes may help identify greater linkage signals. The aim of the study is to evaluate the genetic linkage evidence for schizophrenia in subsets of families with earlier age at onset or greater neurocognitive deficits.Patients with schizophrenia (n  =  1,207) and their first-degree relatives (n  =  1,035) from 557 families with schizophrenia were recruited from six data collection field research centers throughout Taiwan. Subjects completed a face-to-face semi-structured interview, the Continuous Performance Test (CPT), the Wisconsin Card Sorting Test, and were genotyped with 386 microsatellite markers across the genome.A maximum nonparametric logarithm of odds (LOD) score of 4.17 at 2q22.1 was found in 295 families ranked by increasing age at onset, which had significant increases in the maximum LOD score compared with those obtained in initial linkage analyses using all available families. Based on this subset, a further subsetting by false alarm rate on the undegraded and degraded CPT obtained further increase in the nested subset-based LOD on 2q22.1, with a score of 7.36 in 228 families and 7.71 in 243 families, respectively.We found possible evidence of linkage on chromosome 2q22.1 in families of schizophrenia patients with more CPT false alarm rates nested within the families with younger age at onset. These results highlight the importance of incorporating genetically informative phenotypes in unraveling the complex genetics of schizophrenia

    The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia.

    Get PDF
    RATIONALE: The NEWMEDS initiative (Novel Methods leading to New Medications in Depression and Schizophrenia, http://www.newmeds-europe.com ) is a large industrial-academic collaborative project aimed at developing new methods for drug discovery for schizophrenia. As part of this project, Work package 2 (WP02) has developed and validated a comprehensive battery of novel touchscreen tasks for rats and mice for assessing cognitive domains relevant to schizophrenia. OBJECTIVES: This article provides a review of the touchscreen battery of tasks for rats and mice for assessing cognitive domains relevant to schizophrenia and highlights validation data presented in several primary articles in this issue and elsewhere. METHODS: The battery consists of the five-choice serial reaction time task and a novel rodent continuous performance task for measuring attention, a three-stimulus visual reversal and the serial visual reversal task for measuring cognitive flexibility, novel non-matching to sample-based tasks for measuring spatial working memory and paired-associates learning for measuring long-term memory. RESULTS: The rodent (i.e. both rats and mice) touchscreen operant chamber and battery has high translational value across species due to its emphasis on construct as well as face validity. In addition, it offers cognitive profiling of models of diseases with cognitive symptoms (not limited to schizophrenia) through a battery approach, whereby multiple cognitive constructs can be measured using the same apparatus, enabling comparisons of performance across tasks. CONCLUSION: This battery of tests constitutes an extensive tool package for both model characterisation and pre-clinical drug discovery.This work was supported by the Innovative Medicine Initiative Joint Undertaking under grant agreement no. 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013). The authors thank Charlotte Oomen for valuable comments on the manuscript.This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s00213-015-4007-

    Mapping and Imaging the Aggressive Brain in Animals and Humans

    Get PDF

    Executive Function in Pediatric Bipolar Disorder and Attention-Deficit Hyperactivity Disorder: In Search of Distinct Phenotypic Profiles

    Full text link
    • …
    corecore