23 research outputs found

    Geochronology of sediment cores from the Vefsnfjord, Norway

    Get PDF
    The sedimentary environment is a repository and carrier for a variety of pollutants, and sediment transport from land to coastal areas is an important environmental process. In the present study, we use 210Pb/226Ra and 137Cs in sediment cores to assess sediment supply rates at four sites within the Vefsnfjord in Nordland county, Norway. This area was highly affected by fallout from the Chernobyl accident in 1986 and inventories of 137Cs in the fjord are much higher than in many other Norwegian fjords. Sedimentation rates between 0.042 and 0.25 g cm−2 y−1 (0.060 and 0.38 cm y−1) were determined using a combination of the Constant Rate of Supply (CRS) and Constant Flux:Constant Sedimentation rate (CF:CS) models. Well-defined 137Cs concentration peaks were used as a supplementary tool to the 210Pb dating methods.publishedVersio

    Condition-Dependent Cell Volume and Concentration of Escherichia coli to Facilitate Data Conversion for Systems Biology Modeling

    Get PDF
    Systems biology modeling typically requires quantitative experimental data such as intracellular concentrations or copy numbers per cell. In order to convert population-averaging omics measurement data to intracellular concentrations or cellular copy numbers, the total cell volume and number of cells in a sample need to be known. Unfortunately, even for the often studied model bacterium Escherichia coli this information is hardly available and furthermore, certain measures (e.g. cell volume) are also dependent on the growth condition. In this work, we have determined these basic data for E. coli cells when grown in 22 different conditions so that respective data conversions can be done correctly. First, we determine growth-rate dependent cell volumes. Second, we show that in a 1 ml E. coli sample at an optical density (600 nm) of 1 the total cell volume is around 3.6 µl for all conditions tested. Third, we demonstrate that the cell number in a sample can be determined on the basis of the sample's optical density and the cells' growth rate. The data presented will allow for conversion of E. coli measurement data normalized to optical density into volumetric cellular concentrations and copy numbers per cell - two important parameters for systems biology model development

    Long-term risk of tuberculosis among immigrants in Norway

    No full text
    corecore