551 research outputs found

    Regulation of macrophage and granulocyte proliferation. Specificities of prostaglandin E and lactoferrin

    Get PDF
    Hemopoietic colony-forming cells committed to macrophage differentiation (M-CFC) are selectively and differentially inhibited by prostaglandin E (PGE). A hierarchy of sensitivity was observed among murine CFC stimulated by colony-stimulating factors (CSF) which differ in their ability to initiate proliferation of morphologically distinct colony types, or stimulated by CSF provided by macrophage feeder layers. Inhibition of macrophage colony formation to 50 percent levels occurred with PGE concentrations between 10(-8) and 10(-9) M, and was still evident at 10(-10) -10(-11) M PGE concentrations. The growth of mixed colonies containing both macrophages and neutrophils was less sensitive to the inhibitory effects of PGE, however, the monocytoid component of these colonies was reduced in the presence of PGE. Neutrophil progenitor cell proliferation was not influenced by PGE concentrations below 10(-6) M, regardless of time of addition of PGE, whereas clonal macrophage expansion, as well as clone size, was sensitive to inhibition by PGE when added as late as 3 d after culture initiation. Prostaglandin F(2α), was not inhibitory to colony formation. Experimental evidence for a selective role of macrophage PGE in the regulation of macrophage colony formation was directly provided by utilizing resident peritoneal macrophages as a source of CSF for bone marrow target cell overlays. Simultaneous morphological analysis of colonies proliferating in bilayer culture in response to increasing concentrations of macrophages, and direct measurements of PGE synthesized by an identical number of macrophages maintained in liquid culture demonstrate that a specific decline in macrophage colony formation occurs coincident with a linear increase in macrophage PGE synthesis. Inhibition of macrophage PGE synthesis by indomethacin results in the specific enhancement of macrophage colony formation. Furthermore, macrophage PGE synthesis is induced by CSF preparations with the selective capacity to differentially stimulate macrophage proliferation, but not by those which preferentially stimulate granulocyte colony formation. In comparison to the effects of PGE on M-CFC, polymorphonuclear granulocyte-derived lactoferrin (LF) reduces macrophage production of colony-stimulating activities for macrophage, mixed macrophage- neutrophil and neutrophil colony formation. The ability of LF to reduce macrophage PGE synthesis, presumably by decreasing CSF production, suggests that LF and PGE can interact in the control of macrophage and granulocyte proliferation

    miRNA regulation of Tip110 expression and self-renewal and differentiation of human CD34+ hematopoietic cells

    Get PDF
    Tip110 expression regulates hematopoiesis, but the regulatory mechanisms during hematopoiesis are not fully understood. There are a number of putative microRNA (miRNA) binding sites identified within the Tip110 3' untranslated region (3'UTR). In this study, we determined the relationship among Tip110 miRNA, Tip110 expression and self-renewal and differentiation of human CD34+ hematopoietic cells. Using a Tip110 3UTR-based reporter gene assay, 11 miRNA showed the specific activity toward the Tip110 3'UTR and down-regulated constitutive Tip110 mRNA expression. When human cord blood CD34+ cells were differentiated, Tip110 mRNA expression showed significant decreases. Concurrently, five miRNA showed significant increases, five miRNA showed significant decreases, and one miRNA remained unchanged. To further assess the roles of miRNA in Tip110 expression and self-renewal and differentiation of human CD34+ hematopoietic cells, human cord blood CD34+ cells were transduced to express the full-length Tip110 3'UTR RNA. Expression of the Tip110 3'UTR RNA led to significant increases of Tip110 mRNA, and the number of hematopoietic stem cells and progenitor cells. Taken together, these results show important roles of Tip110 miRNA in Tip110 expression control and Tip110 regulation of hematopoiesis and offer a possibility of using Tip110 miRNA or 3'UTR as a strategy to maintain human CD34+ hematopoietic cells

    Drugging the “Undruggable” DNA-binding Domain of STAT3 for Inhibition of Cancer Cell Migration and Invasion

    Get PDF
    poster abstractSignal transducer and activator of transcription 3 (STAT3) is constitutively activated in malignant tumors, and its activation is associated with high histological grade and advanced cancer stage. STAT3 has been shown to play important roles in multiple aspects of cancer aggressiveness including migration, invasion, survival, self-renewal, angiogenesis, and tumor cell immune evasion by regulating the expression of multiple downstream target genes. Thus, inhibiting STAT3 promises an attracting strategy for treatment of advanced tumors with metastatic potential. Previously, we identified a STAT3 inhibitor, inS3-54, by targeting the “undruggable” DNA-binding site of STAT3 using an improved in-silico screening approach. To further develop this inhibitor, we identified 79 analogues of inS3-54 for the structure-activity relationship analysis. Further study of five effective analogues shows that four analogues (#1, 18, 26, and 69) inhibit STAT3-dependent colony formation of hematopoietic progenitor cells, indicating a higher selectivity for STAT3 than their parental compound, inS3-54 and another analogue #74. These compounds also (1) inhibit STAT3-specific DNA binding activity; (2) suppress proliferation of cancer cells that have constitutively activated STAT3; and (3) inhibit migration and invasion of cancer cells. In addition, analogue #26-conjugated Sepharose beads could also pull down STAT3, revealing a possible direct binding between STAT3 and the inhibitor. Taken together, we conclude that it is possible to inhibit STAT3 by targeting its DNA-binding domain for discovery of anticancer therapeutics and for treatment of metastatic cancers

    Potency analysis of cellular therapies: the emerging role of molecular assays

    Get PDF
    Potency testing is an important part of the evaluation of cellular therapy products. Potency assays are quantitative measures of a product-specific biological activity that is linked to a relevant biological property and, ideally, a product's in vivo mechanism of action. Both in vivo and in vitro assays can be used for potency testing. Since there is often a limited period of time between the completion of production and the release from the laboratory for administration to the patient, in vitro assays such are flow cytometry, ELISA, and cytotoxicity are typically used. Better potency assays are needed to assess the complex and multiple functions of cellular therapy products, some of which are not well understood. Gene expression profiling using microarray technology has been widely and effectively used to assess changes of cells in response to stimuli and to classify cancers. Preliminary studies have shown that the expression of noncoding microRNA which play an important role in cellular development, differentiation, metabolism and signal transduction can distinguish different types of stem cells and leukocytes. Both gene and microRNA expression profiling have the potential to be important tools for testing the potency of cellular therapies. Potency testing, the complexities associated with potency testing of cellular therapies, and the potential role of gene and microRNA expression microarrays in potency testing of cellular therapies is discussed

    RXR negatively regulates ex vivo expansion of human cord blood hematopoietic stem and progenitor cells

    Get PDF
    Ex vivo expansion of human cord blood (CB) hematopoietic stem cells (HSCs) is one approach to overcome limited numbers of HSCs in single CB units. However, there is still no worldwide acceptable HSC ex vivo expansion system. A main reason is that we still have very limited knowldege regarding mechanisms underlying maintenance and expansion of CB HSCs. Here we report that retinoid X receptor (RXR) activity is of significance for CB HSC ex vivo expansion. RXR antagonist HX531 significantly promoted ex vivo expansion of CB HSCs and progenitor cells (HPCs). RXR agonist Bexarotene notably suppressed ex vivo expansion of CB HSCs. Activation of RXR by Bexarotene significantly blocked expansion of phenotypic HSCs and HPCs and expressed increased functional HPCs as assessed by colony formation induced by UM171 and SR1. In vivo transplantation experiments in immune-deficient mice demonstrated that HX531 expanded CB HSCs possess long-term reconstituting capacities, and Bexarotene treatment inhibited expansion of functional CB HSCs. RNA-seq analysis revealed that RXR regulates expression of FBP1 (a negative regulator of glucose metabolism) and many genes involved in differentation. ECAR analysis showed that HX531 significantly promoted glycolytic activity of CB CD34+ HSCs and HPCs. Our studies suggest that RXR is a negative regulator of ex vivo expansion of CB HSCs and HPCs

    The novel CXCR4 antagonist POL5551 mobilizes hematopoietic stem and progenitor cells with greater efficiency than Plerixafor

    Get PDF
    Mobilized blood has supplanted bone marrow (BM) as the primary source of hematopoietic stem cells for autologous and allogeneic stem cell transplantation. Pharmacologically enforced egress of hematopoietic stem cells from BM, or mobilization, has been achieved by directly or indirectly targeting the CXCL12/CXCR4 axis. Shortcomings of the standard mobilizing agent, granulocyte colony-stimulating factor (G-CSF), administered alone or in combination with the only approved CXCR4 antagonist, Plerixafor, continue to fuel the quest for new mobilizing agents. Using Protein Epitope Mimetics technology, a novel peptidic CXCR4 antagonist, POL5551, was developed. In vitro data presented herein indicate high affinity to and specificity for CXCR4. POL5551 exhibited rapid mobilization kinetics and unprecedented efficiency in C57BL/6 mice, exceeding that of Plerixafor and at higher doses also of G-CSF. POL5551-mobilized stem cells demonstrated adequate transplantation properties. In contrast to G-CSF, POL5551 did not induce major morphological changes in the BM of mice. Moreover, we provide evidence of direct POL5551 binding to hematopoietic stem and progenitor cells (HSPCs) in vivo, strengthening the hypothesis that CXCR4 antagonists mediate mobilization by direct targeting of HSPCs. In summary, POL5551 is a potent mobilizing agent for HSPCs in mice with promising therapeutic potential if these data can be orroborated in humans

    Neonatal umbilical cord blood transplantation halts skeletal disease progression in the murine model of MPS-I

    Get PDF
    Umbilical cord blood (UCB) is a promising source of stem cells to use in early haematopoietic stem cell transplantation (HSCT) approaches for several genetic diseases that can be diagnosed at birth. Mucopolysaccharidosis type I (MPS-I) is a progressive multi-system disorder caused by deficiency of lysosomal enzyme α-L-iduronidase, and patients treated with allogeneic HSCT at the onset have improved outcome, suggesting to administer such therapy as early as possible. Given that the best characterized MPS-I murine model is an immunocompetent mouse, we here developed a transplantation system based on murine UCB. With the final aim of testing the therapeutic efficacy of UCB in MPS-I mice transplanted at birth, we first defined the features of murine UCB cells and demonstrated that they are capable of multi-lineage haematopoietic repopulation of myeloablated adult mice similarly to bone marrow cells. We then assessed the effectiveness of murine UCB cells transplantation in busulfan-conditioned newborn MPS-I mice. Twenty weeks after treatment, iduronidase activity was increased in visceral organs of MPS-I animals, glycosaminoglycans storage was reduced, and skeletal phenotype was ameliorated. This study explores a potential therapy for MPS-I at a very early stage in life and represents a novel model to test UCB-based transplantation approaches for various diseases

    Autocrine TNF-α production supports CML stem and progenitor cell survival and enhances their proliferation.

    Get PDF
    Chronic myeloid leukemia (CML) stem cells are not dependent on BCR-ABL kinase for their survival, suggesting that kinase-independent mechanisms must contribute to their persistence. We observed that CML stem/progenitor cells (SPCs) produce tumor necrosis factor-α (TNF-α) in a kinase-independent fashion and at higher levels relative to their normal counterparts. We therefore investigated the role of TNF-α and found that it supports survival of CML SPCs by promoting nuclear factor κB/p65 pathway activity and expression of the interleukin 3 and granulocyte/macrophage-colony stimulating factor common β-chain receptor. Furthermore, we demonstrate that in CML SPCs, inhibition of autocrine TNF-α signaling via a small-molecule TNF-α inhibitor induces apoptosis. Moreover TNF-α inhibition combined with nilotinib induces significantly more apoptosis relative to either treatment alone and a reduction in the absolute number of primitive quiescent CML stem cells. These results highlight a novel survival mechanism of CML SPCs and suggest a new putative therapeutic target for their eradication.This study was supported by the Glasgow Experimental Cancer Medicine Centre , which is funded by Cancer Research UK and by the Chief Scientist’s Office, Scotland. Cell sorting facilities were funded by the Kay Kendall Leukaemia Fund (KKL501) and the Howat Foundation. Funding was provided by Medical Research Council UK clinical research training fellowship grant G1000288 (P.G.), Cancer Research UK Programme grant C11074/A11008 and the Elimination of Leukaemia Fund (ELF/6/ 29/1) (F.P.), National Institutes of Health, National Cancer Institute research grant R01 CA095684 (R.B.), by the Friends of Paul O’Gorman Leukaemia Research Centre (H.G.J.), and Cancer Research UK Programme grant C11074/A11008 (T.L.H.)

    Low oxygen tension primes aortic endothelial cells to the reparative effect of tissue-protective cytokines

    Get PDF
    Erythropoietin (EPO) has both erythropoietic and tissue-protective properties. The EPO analogues carbamylated EPO (CEPO) and pyroglutamate helix B surface peptide (pHBSP) lack the erythropoietic activity of EPO but retain the tissue-protective properties that are mediated by a heterocomplex of EPO receptor (EPOR) and the β common receptor (βCR). We studied the action of EPO and its analogues in a model of wound healing where a bovine aortic endothelial cells (BAECs) monolayer was scratched and the scratch closure was assessed over 24 h under different oxygen concentrations. We related the effects of EPO and its analogues on repair to their effect on BAECs proliferation and migration (evaluated using a micro-Boyden chamber). EPO, CEPO and pHBSP enhanced scratch closure only at lower oxygen (5%), while their effect at atmospheric oxygen (21%) was not significant. The mRNA expression of EPOR was doubled in 5% compared to 21% oxygen, and this was associated with increased EPOR assessed by immunofluorescence and Western blot. By contrast βCR mRNA levels were similar in 5% and 21% oxygen. EPO and its analogues increased both BAECs proliferation and migration, suggesting that both may be involved in the reparative process. The priming effect of low oxygen tension on the action of tissue-protective cytokines may be of relevance to vascular disease, including atherogenesis and restenosis
    corecore