20 research outputs found

    Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics.

    Get PDF
    Novel metabolites distinct from canonical pathways can be identified through the integration of three cheminformatics tools: BinVestigate, which queries the BinBase gas chromatography-mass spectrometry (GC-MS) metabolome database to match unknowns with biological metadata across over 110,000 samples; MS-DIAL 2.0, a software tool for chromatographic deconvolution of high-resolution GC-MS or liquid chromatography-mass spectrometry (LC-MS); and MS-FINDER 2.0, a structure-elucidation program that uses a combination of 14 metabolome databases in addition to an enzyme promiscuity library. We showcase our workflow by annotating N-methyl-uridine monophosphate (UMP), lysomonogalactosyl-monopalmitin, N-methylalanine, and two propofol derivatives

    Phase I study of the combination of losoxantrone and cyclophosphamide in patients with refractory solid tumours

    Get PDF
    Losoxantrone is a DNA intercalator that was developed with the potential to replace anthracyclines. The recommended single agent dose of losoxantrone is 50 mg m−2 every 3 weeks. We conducted a phase I study of losoxantrone and a fixed dose of cyclophosphamide on a q3 weekly schedule. Forty-nine patients were enrolled, of which 46 were evaluable for toxicity. The dose-limiting toxicity was neutropenia at the maximum tolerable losoxantrone dose of 45 mg m−2. With granulocyte colony-stimulating factor support, significant further dose escalation of losoxantrone was achieved. Cardiotoxicity was seen with cumulative dosing. Pharmacokinetics of losoxantrone revealed linear kinetics and triphasic clearance, with significant interpatient variability. No objective responses were seen in this study. Neutropenia was dose-limiting in this combination with or without granulocyte colony-stimulating factor support. The recommended dose for further testing is cyclophosphamide 500 mg m−2 followed by losoxantrone 95 mg m−2 with granulocyte colony-stimulating factor support

    Tuber shape and eye depth variation in a diploid family of Andean potatoes.

    Get PDF
    BACKGROUND: Tuber appearance is highly variable in the Andean cultivated potato germplasm. The diploid backcross mapping population ‘DMDD’ derived from the recently sequenced genome ‘DM’ represents a sample of the allelic variation for tuber shape and eye depth present in the Andean landraces. Here we evaluate the utility of morphological descriptors for tuber shape for identification of genetic loci responsible for the shape and eye depth variation. RESULTS: Subjective morphological descriptors and objective tuber length and width measurements were used for assessment of variation in tuber shape and eye depth. Phenotypic data obtained from three trials and male–female based genetic maps were used for quantitative trait locus (QTL) identification. Seven morphological tuber shapes were identified within the population. A continuous distribution of phenotypes was found using the ratio of tuber length to tuber width and a QTL was identified in the paternal map on chromosome 10. Using toPt-437059, the marker at the peak of this QTL, the seven tuber shapes were classified into two groups: cylindrical and non-cylindrical. In the first group, shapes classified as ‘compressed’, ‘round’, ‘oblong’, and ‘long-oblong’ mainly carried a marker allele originating from the male parent. The tubers in this group had deeper eyes, for which a strong QTL was found at the same location on chromosome 10 of the paternal map. The non-cylindrical tubers classified as ‘obovoid’, ‘elliptic’, and ‘elongated’ were in the second group, mostly lacking the marker allele originating from the male parent. The main QTL for shape and eye depth were located in the same genomic region as the previously mapped dominant genes for round tuber shape and eye depth. A number of candidate genes underlying the significant QTL markers for tuber shape and eye depth were identified. CONCLUSIONS: Utilization of a molecular marker at the shape and eye depth QTL enabled the reclassification of the variation in general tuber shape to two main groups. Quantitative measurement of the length and width at different parts of the tuber is recommended to accompany the morphological descriptor classification to correctly capture the shape variation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12863-015-0213-0) contains supplementary material, which is available to authorized users

    Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As a major component of plant cell wall, lignin plays important roles in mechanical support, water transport, and stress responses. As the main cause for the recalcitrance of plant cell wall, lignin modification has been a major task for bioenergy feedstock improvement. The study of the evolution and function of lignin biosynthesis genes thus has two-fold implications. First, the lignin biosynthesis pathway provides an excellent model to study the coordinative evolution of a biochemical pathway in plants. Second, understanding the function and evolution of lignin biosynthesis genes will guide us to develop better strategies for bioenergy feedstock improvement.</p> <p>Results</p> <p>We analyzed lignin biosynthesis genes from fourteen plant species and one symbiotic fungal species. Comprehensive comparative genome analysis was carried out to study the distribution, relatedness, and family expansion of the lignin biosynthesis genes across the plant kingdom. In addition, we also analyzed the comparative synteny map between rice and sorghum to study the evolution of lignin biosynthesis genes within the <it>Poaceae </it>family and the chromosome evolution between the two species. Comprehensive lignin biosynthesis gene expression analysis was performed in rice, poplar and <it>Arabidopsis</it>. The representative data from rice indicates that different fates of gene duplications exist for lignin biosynthesis genes. In addition, we also carried out the biomass composition analysis of nine <it>Arabidopsis </it>mutants with both MBMS analysis and traditional wet chemistry methods. The results were analyzed together with the genomics analysis.</p> <p>Conclusion</p> <p>The research revealed that, among the species analyzed, the complete lignin biosynthesis pathway first appeared in moss; the pathway is absent in green algae. The expansion of lignin biosynthesis gene families correlates with substrate diversity. In addition, we found that the expansion of the gene families mostly occurred after the divergence of monocots and dicots, with the exception of the C4H gene family. Gene expression analysis revealed different fates of gene duplications, largely confirming plants are tolerant to gene dosage effects. The rapid expansion of lignin biosynthesis genes indicated that the translation of transgenic lignin modification strategies from model species to bioenergy feedstock might only be successful between the closely relevant species within the same family.</p

    A Viral Ubiquitin Ligase Has Substrate Preferential SUMO Targeted Ubiquitin Ligase Activity that Counteracts Intrinsic Antiviral Defence

    Get PDF
    Intrinsic antiviral resistance represents the first line of intracellular defence against virus infection. During herpes simplex virus type-1 (HSV-1) infection this response can lead to the repression of viral gene expression but is counteracted by the viral ubiquitin ligase ICP0. Here we address the mechanisms by which ICP0 overcomes this antiviral response. We report that ICP0 induces the widespread proteasome-dependent degradation of SUMO-conjugated proteins during infection and has properties related to those of cellular SUMO-targeted ubiquitin ligases (STUbLs). Mutation of putative SUMO interaction motifs within ICP0 not only affects its ability to degrade SUMO conjugates, but also its capacity to stimulate HSV-1 lytic infection and reactivation from quiescence. We demonstrate that in the absence of this viral countermeasure the SUMO conjugation pathway plays an important role in mediating intrinsic antiviral resistance and the repression of HSV-1 infection. Using PML as a model substrate, we found that whilst ICP0 preferentially targets SUMO-modified isoforms of PML for degradation, it also induces the degradation of PML isoform I in a SUMO modification-independent manner. PML was degraded by ICP0 more rapidly than the bulk of SUMO-modified proteins in general, implying that the identity of a SUMO-modified protein, as well as the presence of SUMO modification, is involved in ICP0 targeting. We conclude that ICP0 has dual targeting mechanisms involving both SUMO- and substrate-dependent targeting specificities in order to counteract intrinsic antiviral resistance to HSV-1 infection

    3D-QSAR CoMFA studies on sulfonamide inhibitors of the Rv3588c β-carbonic anhydrase from Mycobacterium tuberculosis

    No full text
    AbstractThe human pathogen Mycobacterium tuberculosis contains three β-carbonic anhydrases (CAs, EC 4.2.1.1) in its genome. Inhibition of some of these CAs was shown to modulate the growth of M. tuberculosis. 3D-QSAR Comparative molecular field analyses (CoMFA) were carried out on inhibitors of the enzyme Rv3588c (also denominated mtCA 2). A series of sulfonamides known to inhibit mtCA 2, including some diazenylbenzenesulfonamides, was considered in our study. The predictive ability of the model was assessed using a test set of seven compounds. The best model has demonstrated a good fit having predictive r2 value of 0.93 and cross-validated coefficient q2 value as 0.88 in tripos CoMFA region. Our results indicate that the steric and electrostatic factors play a significant role in mtCA 2 inhibition for the investigated compounds. We proposed nine new not yet synthesized mtCA 2 inhibitors, all of them probably with significantly improved anti-Rv3588c inhibitory activity
    corecore