3,669 research outputs found

    Coupled ‘storm-flood’ depositional model: application to the Miocene–Modern Baram Delta Province, north-west Borneo

    Get PDF
    The Miocene to Modern Baram Delta Province is a highly efficient source to sink system that has accumulated 9 to 12 km of coastal-deltaic to shelf sediments over the past 15 Myr. Facies analysis based on ca 1 km of total vertical outcrop stratigraphy, combined with subsurface geology and sedimentary processes in the present-day Baram Delta Province, suggests a ‘storm-flood’ depositional model comprising two distinct periods: (i) fair-weather periods are dominated by alongshore sediment reworking and coastal sand accumulation; and (ii) monsoon-driven storm periods are characterised by increased wave energy and offshore-directed downwelling storm flow that occur simultaneously with peak fluvial discharge caused by storm-precipitation (‘storm-floods’). The modern equivalent environment has the following characteristics: (i) humid-tropical monsoonal climate; (ii) narrow (ca <100 km) and steep (ca 1°), densely vegetated, coastal plain; (iii) deep tropical weathering of a mudstone-dominated hinterland; (iv) multiple independent, small to moderate-sized (102 to 105 km2) drainage basins; (v) predominance of river-mouth bypassing; and (vi) supply-dominated shelf. The ancient, proximal part of this system (the onshore Belait Formation) is dominated by strongly cyclical sandier-upward successions (metre to decametre-scale) comprising (from bottom to top): (i) finely laminated mudstone with millimetre-scale silty laminae; (ii) heterolithic sandstone-mudstone alternations (centimetre to metre-scale); and (iii) sharp-based, swaley cross-stratified sandstone beds and bedsets (metre to decimetre-scale). Gutter casts (decimetre to metre-scale) are widespread, they are filled with swaley cross-stratified sandstone and their long-axes are oriented perpendicular to the palaeo-shoreline. The gutter casts and other associated waning-flow event beds suggest that erosion and deposition was controlled by high-energy, offshore-directed, oscillatory-dominated, sediment-laden combined flows within a shoreface to delta front setting. The presence of multiple river mouths and exceptionally high rates of accommodation creation (characteristic of the Neogene to Recent Baram Delta Province; up to 3000 m/Ma), in a ‘storm-flood’ dominated environment, resulted in a highly efficient and effective offshore-directed sediment transport system

    Saccharification of Maize Agrowastes by Cellulolytic Fungi Isolated from Ejura Farms in Ejura, Ghana

    Get PDF
    Maize is the most abundant cereal grown in Ghana and is accompanied by enormous amount of maize agrowastes. This waste which is currently underutilized can be used to produce bio-ethanol. Saccharification of lignocellulosic materials into simple sugars is a crucial and costly step towards bio-ethanol production from them. This work isolated cellulolytic fungi from soil sampled from Ejura farms which can efficiently hydrolyse maize agrowastes. Ten of the isolates exhibited cellulase activities when screened on Mandel’s agar media. Aspergillus niger had the highest significant filter paper activity, carboxymethyl cellulose activity and protein concentra-tion of 0.37 FPU/ml 0.7025 U/ml and 5.62 mg/ml respectively when the cellulolytic isolates were assayed on corncob based broth media.Keywords: cellulolytic fungi, enzyme activity, lignocellulos

    Preserved stratigraphic architecture and evolution of a net-transgressive mixed wave- and tide-influenced coastal system: Cliff House Sandstone, northwestern New Mexico, USA

    Get PDF
    The Cretaceous Cliff House Sandstone comprises a thick (400 m) net- transgressive succession representing a mixed wave- and tide-influenced shallow-marine system that migrated episodically landwards. This study examines the youngest part (middle Campanian) of the Cliff House Sandstone, exposed in Chaco Cultural Natural Historical Park, northwest New Mexico, U.S. A. Detailed mapping of facies architecture between a three-dimensional network of measured sections has allowed the character, geometry, and distribution of key stratigraphic surfaces and stratal units to be reconstructed. Upward-shallowing facies successions (parasequences) are separated by laterally extensive transgressive erosion (ravinement) surfaces cut by both wave and tide processes. Preservation of facies tracts in each parasequence is controlled by the depth of erosion and migration trajectory of the overlying ravinement surfaces. In most parasequences, there is no preservation of the proximal wave-dominated facies tracts (foreshore, upper-shoreface), resulting in thin (4–7 m) top-truncated packages. Four distinct shallow marine tongues (parasequence sets) have been identified, consisting of ten parasequences with a total stratigraphic thickness of ~ 100 m. Each tongue records an episode of complex shoreline migration history (multiple regressive–transgressive phases) in an overall net-transgressive system. The ravinement surfaces provide a stratigraphic framework in which to understand partitioning of tide- and wave-dominated deposits in a net-transgressive system, and a model is presented to account for the sediment distribution and stratigraphic architecture observed in each parasequence. Despite a complex internal architecture, parasequences exhibit a predictable pattern which can be related to the regressive and transgressive phases of deposition. Preservation of wave-dominated facies tracts is associated with shoreline regression, while tide-dominated facies tracts are interpreted to record sediment accumulation during shoreline transgression that also resulted in significant erosion of the underlying regressive deposits. The interplay between erosion, sediment bypass, and deposition during regression and transgression is shown to ultimately control the preservation and stratigraphic architecture of the larger-scale net-transgressive coastal system. While the Cliff House Sandstone exhibits a facies composition and quantitative stacking patterns (shoreline trajectory) similar to other studied examples, differences in the dip-extent of the wave-dominated sandstone tongue has resulted in a more disconnected architecture between the high-fr equency cycles. Understanding the variety of stratal geometries that ravinement surfaces can generate is therefore crucial to predicting the spatial distribution and facies architecture in transgressive systems

    Depositional evolution of a progradational to aggradational, mixed-influenced deltaic succession: Jurassic Tofte and Ile formations, southern Halten Terrace, offshore Norway

    Get PDF
    Predicting the hydrodynamics, morphology and evolution of ancient deltaic successions requires the evaluation of the three-dimensional depositional process regime based on sedimentary facies analysis. This has been applied to a core-based subsurface facies analysis of a mixed-energy, clastic coastal-deltaic succession in the Lower-to-Middle Jurassic of the Halten Terrace, offshore mid-Norway. Three genetically related successions with a total thickness of 100–300 m and a total duration of 12.5 Myr comprising eight facies associations record two initial progradational phases and a final aggradational phase. The progradational phases (I and II) consist of coarsening upward successions that pass from prodelta and offshore mudstones (FA1), through delta front and mouth bar sandstones (FA2) and into erosionally based fluvial- (FA3) and marine-influenced (FA4) channel fills. The two progradational phases are interpreted as fluvial- and wave-dominated, tide-influenced deltas. The aggradational phase (III) consists of distributary channel fills (FA3 and FA4), tide-dominated channels (FA5), intertidal to subtidal heterolithic fine-grained sandstones (FA6) and coals (FA7). The aggradational phase displays more complex facies relationships and a wider range of environments, including (1) mixed tide- and fluvial-dominated, wave-influenced deltas, (2) non-deltaic shorelines (tidal channels, tidal flats and vegetated swamps), and (3) lower shoreface deposits (FA8). The progradational to aggradational evolution of this coastal succession is represented by an overall upward decrease in grain size, decrease in fluvial influence and increase in tidal influence. This evolution is attributed to an allogenic increase in the rate of accommodation space generation relative to sediment supply due to tectonic activity of the rift basin. In addition, during progradation, there was also an autogenic increase in sediment storage on the coastal plain, resulting in a gradual autoretreat of the depositional system. This is manifested in the subsequent aggradation of the system, when coarse-grained sandstones were trapped in proximal locations, while only finer grained sediment reached the coastline, where it was readily reworked by tidal and wave processes

    Development of a diagnostic sensor for measuring blood cell concentrations during haemoconcentration

    Get PDF
    Background: HemoSepÂź is a commercial ultrafiltration and haemoconcentration device for the concentration of residual bypass blood following surgery. This technology is capable of reducing blood loss in cardiac and other types of "clean site" procedures, including paediatric surgery. Clinical feedback suggested that the device would be enhanced by including a sensor technology capable of discerning the concentration level of the processed blood product. We sought to develop a novel sensor that can, using light absorption, give an accurate estimate of packed cell volume (PCV). Materials and methods: A sensor-housing unit was 3D printed and the factors influencing the sensor's effectiveness – supply voltage, sensitivity and emitter intensity - were optimised. We developed a smart system, using comparator circuitry capable of visually informing the user when adequate PCV levels (â©Ÿ35%) are attained by HemoSepÂź blood processing, which ultimately indicates that the blood is ready for autotransfusion. Results: Our data demonstrated that the device was capable of identifying blood concentration at and beyond the 35% PCV level. The device was found to be 100% accurate at identifying concentration levels of 35% from a starting level of 20%. Discussion: The sensory capability was integrated into HemoSep'sÂź current device and is designed to enhance the user’s clinical experience and to optimise the benefits of HemoSepÂź therapy. The present study focused on laboratory studies using bovine blood. Further studies are now planned in the clinical setting to confirm the efficacy of the device

    Robust markers and sample sizes for multi‐centre trials of Huntington's disease

    Get PDF
    Objective: The identification of sensitive biomarkers is essential to validate therapeutics for Huntington disease (HD). We directly compare structural imaging markers across the largest collective imaging HD dataset to identify a set of imaging markers robust to multicenter variation and to derive upper estimates on sample sizes for clinical trials in HD. Methods: We used 1 postprocessing pipeline to retrospectively analyze T1-weighted magnetic resonance imaging (MRI) scans from 624 participants at 3 time points, from the PREDICT-HD, TRACK-HD, and IMAGE-HD studies. We used mixed effects models to adjust regional brain volumes for covariates, calculate effect sizes, and simulate possible treatment effects in disease-affected anatomical regions. We used our model to estimate the statistical power of possible treatment effects for anatomical regions and clinical markers. Results: We identified a set of common anatomical regions that have similarly large standardized effect sizes (>0.5) between healthy control and premanifest HD (PreHD) groups. These included subcortical, white matter, and cortical regions and nonventricular cerebrospinal fluid (CSF). We also observed a consistent spatial distribution of effect size by region across the whole brain. We found that multicenter studies were necessary to capture treatment effect variance; for a 20% treatment effect, power of >80% was achieved for the caudate (n = 661), pallidum (n = 687), and nonventricular CSF (n = 939), and, crucially, these imaging markers provided greater power than standard clinical markers. Interpretation: Our findings provide the first cross-study validation of structural imaging markers in HD, supporting the use of these measurements as endpoints for both observational studies and clinical trial

    Mass‐transport complexes (MTCs) document subsidence patterns in a northern Gulf of Mexico salt minibasin

    Get PDF
    Mass‐transport complexes (MTCs) dominate the stratigraphic record of many salt‐influenced sedimentary basins. Commonly in such settings, halokinesis is invoked as a primary trigger for MTC emplacement, although the link between specific phases of salt movement, and related minibasin dynamics, remains unclear. Here, we use high‐quality 3D seismic reflection and well data to constrain the composition, geometry and distribution (in time and space) of six MTCs preserved in a salt‐confined, supra‐canopy minibasin in the northern Gulf of Mexico, and to assess how their emplacement relate to regional and local controls. We define three main tectono‐sedimentary phases in the development of the minibasin: (a) initial minibasin subsidence and passive diapirism, during which time deposition was dominated by relatively large‐volume MTCs (c. 25 km3) derived from the shelf‐edge or upper slope; (b) minibasin margin uplift and steepening, during which time small‐volume MTCs (c. 20 km3) derived from the shelf‐edge or upper slope were emplaced; and (c) active diapirism, during which time very small volume MTCs (c. 1 km3) were emplaced, locally derived from the diapir flanks or roofs. We present a generic model that emphasizes the dynamic nature of minibasin evolution, and how MTC emplacement relates to halokinetic sequence development. Although based on a single data‐rich case study, our model may be applicable to other MTC‐rich, salt‐influenced sedimentary basins

    Effective flow properties of heterolithic, cross-bedded tidal sandstones: Part 1. Surface-based modeling

    Get PDF
    Tidal heterolithic sandstones are commonly characterized by millimeter- to centimeter-scale intercalations of mudstone and sandstone. Consequently, their effective flow properties are poorly predicted by (1) data that do not sample a representative volume or (2) models that fail to capture the complex three-dimensional architecture of sandstone and mudstone layers. We present a modeling approach in which surfaces are used to represent all geologic heterogeneities that control the spatial distribution of reservoir rock properties (surface-based modeling). The workflow uses template surfaces to represent heterogeneities classified by geometry instead of length scale. The topology of the template surfaces is described mathematically by a small number of geometric input parameters, and models are constructed stochastically. The methodology has been applied to generate generic, three-dimensional minimodels (9 m3 volume) of cross-bedded heterolithic sandstones representing trough and tabular cross-bedding with differing proportions of sandstone and mudstone, using conditioning data from two outcrop analogs from a tide-dominated deltaic deposit. The minimodels capture the cross-stratified architectures observed in outcrop and are suitable for flow simulation, allowing computation of effective permeability values for use in larger-scale models. We show that mudstone drapes in cross-bedded heterolithic sandstones significantly reduce effective permeability and also impart permeability anisotropy in the horizontal as well as vertical flow directions. The workflow can be used with subsurface data, supplemented by outcrop analog observations, to generate effective permeability values to be derived for use in larger-scale reservoir models. The methodology could be applied to the characterization and modeling of heterogeneities in other types of sandstone reservoirs
    • 

    corecore