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Robust Markers and Sample Sizes for
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Objective: The identification of sensitive biomarkers is essential to validate therapeutics for Huntington disease (HD).
We directly compare structural imaging markers across the largest collective imaging HD dataset to identify a set of
imaging markers robust to multicenter variation and to derive upper estimates on sample sizes for clinical trials in HD.
Methods: We used 1 postprocessing pipeline to retrospectively analyze T1-weighted magnetic resonance imaging
(MRI) scans from 624 participants at 3 time points, from the PREDICT-HD, TRACK-HD, and IMAGE-HD studies. We
used mixed effects models to adjust regional brain volumes for covariates, calculate effect sizes, and simulate possible
treatment effects in disease-affected anatomical regions. We used our model to estimate the statistical power of possi-
ble treatment effects for anatomical regions and clinical markers.
Results: We identified a set of common anatomical regions that have similarly large standardized effect sizes (>0.5)
between healthy control and premanifest HD (PreHD) groups. These included subcortical, white matter, and cortical
regions and nonventricular cerebrospinal fluid (CSF). We also observed a consistent spatial distribution of effect size by
region across the whole brain. We found that multicenter studies were necessary to capture treatment effect variance;
for a 20% treatment effect, power of >80% was achieved for the caudate (n = 661), pallidum (n = 687), and non-
ventricular CSF (n = 939), and, crucially, these imaging markers provided greater power than standard clinical markers.
Interpretation: Our findings provide the first cross-study validation of structural imaging markers in HD, supporting the
use of these measurements as endpoints for both observational studies and clinical trials.
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The determination of robust and sensitive measures of dis-
ease stage is of increasing importance for Huntington dis-

ease (HD), where potential disease-modifying treatments are

maturing to the point of requiring large-scale clinical trials.1 As
a rare disease, it is essential that such trials in HD recruit partic-
ipants from multiple centers to provide sufficient statistical
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power to detect treatment effects. Although imaging markers
are seldom used as primary endpoints in clinical trials, they
often provide important supporting information on the effects
of treatment in neurodegeneration.2

Structural magnetic resonance imaging (sMRI) mea-
surements of caudate and putamen volume perform par-
ticularly strongly as markers in HD, showing the earliest
and greatest effect size for group differences and longitudi-
nal change in both premanifest (PreHD) and manifest
HD.3–10 Other subcortical regions, such as the pallidum and
accumbens, also undergo significant atrophy in HD gene car-
riers.11 However, atrophy in these regions is generally not
identified as early as in the caudate and putamen, and it is
unclear whether this is due to biological differences or mea-
surement effects. White matter (WM) and cortical gray mat-
ter changes are also detected in HD.6,10,12 However, reported
changes in cortical gray matter vary considerably.13–18 We
recently recapitulated the ordering of these observations—
putamen and caudate before pallidum, then WM—using
data-driven computational disease progression modelling and
sMRI data.19

Three of the largest cohort studies, PREDICT-HD,20

TRACK-HD,10 and IMAGE-HD,21 were designed to
undertake detailed characterizations of HD progression and
to compare biomarker candidates. However, differences
among enrollment criteria, study design, MRI acquisition,
and processing pipelines mean that the results of previous
work are difficult to compare and are often contrasting.
Moreover, effect size and sample size estimations derived
from sMRI measurements are highly dependent on the
choice of processing pipelines.22

Here, for the first time, we retrospectively process
and analyze imaging data from the PREDICT-HD,
TRACK-HD, and IMAGE-HD cohort studies to cross-
examine imaging markers in varying study designs and
hence demonstrate their potential use in HD multicenter
clinical trials. We use a single image processing pipeline to
calculate volumetric measurements from sMRI data for all
3 cohorts. We use mixed effects models to adjust the volu-
metric measurements for covariates and hence compare
adjusted measurements among cohorts to assess interstudy
agreement. This approach allows us to identify a set of
markers that show similar disease effects across all 3 studies
and to compare the pattern of disease effects across the
whole brain in a standardized manner.

Moreover, we use our data-driven model to simulate
hypothetical treatment effects and hence evaluate how the
relative number of study centers and participants per cen-
ter affects the statistical power of key markers. Crucially,
our model suggests that imaging markers provide higher
statistical power than standard clinical markers and that
multiple centers are necessary to capture the variance of

treatment effects. These findings have important implica-
tions for the use of imaging markers in future HD clinical
trials and more broadly on the design of clinical trials for
rare diseases.

Subjects and Methods
Cohorts
Participants from the PREDICT-HD, TRACK-HD, and
IMAGE-HD studies with measurements at 3 time points (study
baseline plus 2 follow-ups) were included in all analyses. Addi-
tional follow-up data were available from the PREDICT-HD
and TRACK-HD studies, but to reduce sampling bias the num-
ber of follow-ups was made consistent across all 3 studies. Fur-
thermore, to minimize confounds of intrasubject time-dependent
measurement effects, participants were required to have measure-
ments from the same scanner and field strength at all 3 time
points. Finally, participants had to pass a visual quality control
(QC) on each brain scan and segmentation at each time point
(see Statistical Analysis section for details). Using these criteria,
we selected 265 participants from 20 centers in PREDICT-HD,
294 participants from 4 centers in TRACK-HD, and 65 partici-
pants from 1 center in IMAGE-HD (see Supplementary Table 2
for the number of participants at each stage of selection). We
note that no participants underwent any disease modifying treat-
ment during data collection.

PREDICT-HD. Participants were recruited at 33 global
centers, with nearly all participants recruited to be PreHD
or healthy controls (HCs).20 All participants were required
to undergo genetic testing (cytosine, adenine, guanine
[CAG] of ≥39 repeats) independent of the research study.
PREDICT-HD had rolling enrollment between 2001 and
2012, with a total of 1,013 PreHD and 301 gene-negative
controls recruited. Participants were diagnosed according
to standard diagnostic criteria requiring a score of 4 on
the Unified HD Rating Scale (UHDRS) diagnostic confi-
dence level (DCL),23 meaning that the participant has
motor abnormalities at a level representing unequivocal
signs of HD. Participants were excluded from the study at
enrollment if there was a diagnosis of HD or evidence of
an unstable illness, alcohol or drug abuse, a history of special
education or central nervous system disease, a pacemaker or
metallic implants, antipsychotic medications prescribed in
the previous 6 months, or use of phenothiazine-derivative
antiemetic medication for 3 months or more. Acquisition
parameters for the PREDICT-HD scanners included in this
analysis are provided in Supplementary Table 1. Study activi-
ties were reviewed and approved by institutional review
boards at all study and data processing sites. Participants
underwent informed consent procedures and signed consents
for both participation and to allow deidentified research data
to be sent to collaborative institutions for analysis.
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TRACK-HD. Data for TRACK-HD were collected at 4 cen-
ters: Leiden, London, Paris, and Vancouver.10 HD gene car-
riers were required to have a CAG of ≥40 and were recruited
from clinics at each center. At baseline, 123 controls were rec-
ruited, along with 120 PreHD participants and 123 HD par-
ticipants. PreHD participants were required to have a burden
of pathology score of >250 (indicating that they are close to
onset, calculated as [age × (CAG − 35.5)])24 and a UHDRS
Total Motor Score (UHDRS-TMS) of <5, indicating minor
motor symptoms.25 Manifest HD participants were required
to have a DCL of 4 and a Total Functional Capacity (TFC) of
7 or more, as measured by the UHDRS-TFC.23,24 3T
T1-weighted scans were acquired from 4 scanners (2 Siemens
[Erlangen, Germany], 2 Philips [Amsterdam, The Nether-
lands]). The parameters for Siemens were repetition
time (TR) = 2,200 milliseconds, echo time (TE) = 2.2
milliseconds, field of view (FOV) = 28cm, matrix size =
256 × 256,208. For Philips, TR = 7.7 milliseconds, TE = 3.5
milliseconds, FOV = 24cm, matrix size = 242 × 224,164.
The acquisition was sagittal to cover the whole brain. There
was a slice thickness of 1mm, with no gap between slices. These
acquisition protocols were validated for multisite use.10 The
study was approved by the local ethics committees, and written
informed consent was obtained from each participant.

IMAGE-HD. IMAGE-HD was a single-center study with
control, PreHD, and manifest HD participants.21 Gene
carriers had a CAG of ≥39 repeats, and PreHD and mani-
fest HD participants were allocated to each group based
on their UHDRS-TMS, with those having a score of 5 or
less included in the PreHD group and participants with a

score of greater than 5 included in the manifest HD
group. There were 108 participants recruited at baseline,
with imaging data available for 31 PreHD, 31 manifest
HD, and 29 control participants. Data were collected
using a Siemens Magnetom Tim Trio 3T scanner with a
32-channel head coil. T1-weighted images were acquired
with 192 slices, 0.9mm slice thickness, 0.8mm × 0.8mm
in-plane resolution, TE = 2.59 milliseconds, TR = 1,900
milliseconds, and flip angle = 9�. The study was approved
by the Monash University and Melbourne Health Human
Research Ethics Committees, and informed written con-
sent was obtained from each participant prior to testing in
accord with the Helsinki Declaration.

Other Variables
To facilitate comparison among the 3 studies, 3 measures of clin-
ical progression were quantified for each cohort: UHDRS-TMS,
DCL, and UHDRS-TFC, although this was not available for the
IMAGE-HD study. Two cognitive scores from the UHDRS—
the symbol digit modalities test (SDMT)26 and Stroop word
reading test (SWRT)27 —were used as cognitive outcome mea-
sures, the UHDRS-TMS was used as motor outcome measure,
and the disease burden score (DBS)28 was used to quantify
approximate lifetime disease burden.

Image Analysis
Structural MRIs from a total of 265 PREDICT-HD, 294 TRACK-
HD, and 65 IMAGE-HD participants at baseline plus 2 follow-ups
were analyzed. T1-weighted MRI data at 3T were used from the
TRACK-HD and IMAGE-HD datasets and at 1.5T (n = 215) and
3T (n = 50) from the PREDICT-HD dataset. Table 1 shows

TABLE 1. Baseline Demographics of Participants

Demographic

Characteristics

Control Participants PreHD Participants HD Participants

PREDICT-HD TRACK-HD IMAGE-HD PREDICT-HD TRACK-HD IMAGE-HD PREDICT-HD TRACK-HD IMAGE-HD

n 56 106 23 205 105 22 4 83 20

Age 45.1 � 12.1 46.3 � 10.2 44.4 � 13.9 41.8 � 10.8 41.1 � 8.8 43.4 � 8.3 46.8 � 10.7 49.1 � 9.5 53.4 � 8.8

Sex, male:female 36:20 61:45 16:7 129:76 56:49 16:6 3:1 44:39 7:13

TIV 1.37 � 0.134 1.39 � 0.133 1.44 � 0.144 1.37 � 0.13 1.4 � 0.146 1.34 � 0.141 1.32 � 0.128 1.37 � 0.124 1.41 � 0.156

CAG 20.3 � 3.3 NA NA 42.3 � 2.6 43.0 � 2.3 42.0 � 2 43.0 � 4.2 43.6 � 3.1 42.9 � 2.4

TMS 3.3 � 3.8 1.6 � 1.7 NA 5.2 � 5 2.6 � 1.7 1.0 � 1.3 21.2 � 13 23.2 � 10.9 18.2 � 9.4

DCL 0.5 � 0.8 0.3 � 0.4 NA 0.9 � 0.8 0.6 � 0.6 NA 4.0 � 0.1 4.0 � 0.1 NA

TFC 13 � 0.1 12.4 � 1.3 NA 12.6 � 1.8 12.2 � 1.6 NA 12 � 1.4 12.2 � 1.6 NA

DBS NA NA NA 267.1 � 71.8 293 � 47.7 272.1 � 55.4 320.7 � 114 374.7 � 77.7 377.1 � 74.2

Demographic data for the PREDICT-HD, TRACK-HD, and IMAGE-HD participants at baseline.
CAG = cytosine, adenine, guanine; DBS = disease burden score (CAG × years); DCL = diagnostic confidence limit; HD = Huntington disease;
NA = not available; PreHD = premanifest Huntington disease; TFC = total functional capacity; TIV = total intracranial volume; TMS = total motor
score.
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demographic data from each study at baseline, and Supplementary
Tables 3 and 4 show similar tables for each follow-up.

MRI data were provided by data controllers in Neuroim-
aging Informatics Technology Initiative (NIfTI) format and
were postprocessed to acquire regional measurements of brain
volumes using the Geodesic Information Flow (GIF) software

framework.29 GIF was designed to perform regional segmenta-
tion of T1 scans and was evaluated on scans of severe Alzheimer
pathology, where it performed significantly better than other
automated tools when compared to manual segmentation.29 It
produces 156 regional brain volumes, corresponding to the brain
atlas (Neuromorphometrics, Somerville, MA), and includes

FIGURE 1: Randomly selected examples of T1-weighted scans and T1-weighted scans with GIF segmentation overlays for
TRACK-HD (top row), PREDICT-HD (middle row), and IMAGE-HD (bottom row) for controls (left column), premanifest Huntington
disease (PreHD; middle column), and manifest HD (right column).
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correction for intensity bias within the images. Here, because
previous work has shown few hemispheric differences in HD
atrophy,12 we combined bilateral volumes to give a total of
83 regional volumes. Total intracranial volume (TIV) was output
from the GIF segmentation and was calculated as the sum of
cerebrospinal fluid (CSF), cortical gray matter, deep gray matter,
and WM.

Imaging data from all cohorts underwent visual QC to
check for issues in the data collection or processing. Scans were
qualitatively checked by a trained reviewer for artefacts such as
significant motion or poor FOV positioning, and the segmenta-
tions were checked for abject failures. No quantitative criteria
were used for the QC process. Within the PREDICT-HD
dataset, the most common problem was due to the defacing pro-
cedure. Defacing aims to maintain anonymity by wiping facial
features from MRI scans, and the data were provided with this
procedure already performed; however, in some scans the frontal
lobes were wiped along with facial features, producing inaccurate
segmentations. Furthermore, in a small number of cases the seg-
mentation excluded regions of gray matter from the frontal lobes,
and these were removed from the analysis. No other consistent
issues were seen with the segmentation or the data quality,
although data quality was variable. The most substantial varia-
tion in data quality was seen in the PREDICT-HD study, which
is to be expected given that it also has the largest number of sites.
After QC was performed, 36 participants from the PREDICT-
HD cohort and 2 participants from the IMAGE-HD cohort

were found to have considerable movement artefacts, defacing
issues, or poor segmentations and were removed from the analy-
sis. Figure 1 shows examples of scans and associated segmenta-
tions to demonstrate the data quality for this study. The top
panel shows a TRACK-HD PreHD participant where there is
minor spillage of the pallidum and caudate segmentation beyond
the anatomical boundary.

Statistical Analysis
Comparison of Adjusted Volumes. To adjust regional vol-
umes for covariates and estimate their rates of change, we
used linear mixed effects models with the regional volume
as the dependent variable and time and covariates as fixed
effects.30 As such, the adjusted regional volume at baseline
was given by the model at t = 0. Participants were nested
in center as a random effect on the intercept. Covariates
included as fixed effects were time, age, sex, TIV, and group
(PreHD vs control) and an interaction term between time
and age. In addition, the TRACK-HD 3T data included
scanner as a fixed effect, and the PREDICT-HD 1.5T + 3T
data included both scanner and voxel size as a fixed effect.
Study was considered as an additional fixed effect but
encoded the same information as scanner in the IMAGE-
HD 3T cohort, and hence scanner was used as it was more
informative.

FIGURE 2: Absolute value of the standardized effect size between control and premanifest Huntington disease (PreHD) groups
for regional volumes with a weighted mean of >0.5 in the PREDICT 1.5T + 3T, TRACK 3T, and IMAGE 3T cohorts. The 95%
confidence intervals from 2,000 bootstraps of the data are shown. Weights are proportional to the total number of participants
in each cohort (control + PreHD). Regions are ordered by the weighted mean across the 3 cohorts. The bar at the top denotes
significance levels between each pair of studies: PREDICT-HD versus TRACK-HD (PvT), PREDICT-HD versus IMAGE-HD (PvI),
TRACK-HD versus IMAGE-HD (TvI). ***p < 0.0001; **p < 0.001; *p < 0.05. All p values are Bonferroni adjusted for multiple
comparisons. CSF = cerebrospinal fluid. [Color figure can be viewed at www.annalsofneurology.org]
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Effect Sizes between Control and HD Groups. Standardized
effect sizes were estimated between HC and PreHD par-
ticipants at baseline for each adjusted volume separately.
Unless otherwise stated, p values were Bonferroni adjusted
for multiple comparisons. To facilitate direct comparison
among the 3 studies, standardized effect sizes were calcu-
lated as the difference in means between the HC and
PreHD groups divided by the residual standard deviation
in the PreHD group.

Prediction of Treatment Effect. The power of a hypothesized
treatment effect for a given regional volume was estimated
by simulation.31 The covariate-adjusted hyperparameters esti-
mated from the mixed effects model were used to inform the
statistical power model and hence estimate power as a function
of the nested variables (participants nested in center).32 The R

statistical software framework33 with the LMER package34 was
used to fit all models and simulate data. Open-source code is
provided by the authors at: https://github.com/pawij/lme_
model.

Results
Demographics are reported in Table 1, with p values
between each pair of studies reported in Supplementary
Table 5. We note that the 3 studies were optimized for
observing different subcohorts of the HD spectrum, and
hence study-specific inclusion criteria influenced cohort
differences among studies. Most notably, UHDRS-TMS
was significantly different among all 3 cohorts, and
TRACK-HD participants had significantly higher mean
CAG length and DBS (p ≤ 0.001) compared to
PREDICT-HD.

FIGURE 3: Standardized effect size between healthy controls and premanifest Huntington disease (PreHD) groups for each
regional volume and for each study. For visualization purposes, the effect size shown is normalized to the largest effect size
across all studies, which was observed in the right pallidum in TRACK-HD (|t| = 1.74).
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The influence of different inclusion criteria for each
study group was tested by including Study × Group as an
interaction term in the mixed effects model. Tests were per-
formed between the mean group value and the interaction
between study and the group of interest (either PreHD or
manifest HD) and Bonferroni-adjusted for multiple compari-
sons. Differences were noted between HD groups in
PREDICT-HD and TRACK for the pallidum (p < 0.0001)
and amygdala (p < 0.05) and between HD groups in
TRACK-HD and IMAGE-HD for the caudate (p < 0.05).
No significant differences were observed between PreHD
groups.

To compare regional volumes among studies, numeri-
cal values for each region are provided in Supplementary
Tables 6 and 7, which show raw and adjusted volume data,
respectively.

Largest Effect Sizes Are Consistent among
Studies
Figure 2 shows standardized effect sizes, t, between HC and
PreHD groups at baseline, for volumes with a weighted
absolute mean standardized effect size |t| > 0.5, separately in
the PREDICT-HD, TRACK-HD, and IMAGE-HD

cohorts. The weighted mean was calculated using the total
number of participants in the HC and PreHD groups. Con-
fidence intervals were estimated at the 95% level by boo-
tstrapping, using 2,000 replications. The |t| > 0.5 threshold
is semiarbitrary and follows the rule of thumb proposed by
Cohen to identify small (0.2), medium (0.5), and large (0.8)
effect sizes.35 This selection criterion identified 12 regional
volumes, in descending order of |t|: pallidum, caudate, puta-
men, insula WM, nonventricular CSF, optic chiasm, amyg-
dala, basal forebrain, posterior insula, precentral gyrus,
accumbens area, and thalamus proper.

There was general consistency among studies, except
in the first 4 regions (pallidum, caudate, putamen, insula
WM), which had significantly larger effect sizes in
TRACK-HD 3T than in PREDICT-HD 1.5T + 3T or
IMAGE-HD 3T (p < 0.0001). The larger effect sizes in
TRACK-HD were likely due to the PreHD group having
a higher mean DBS than either PREDICT-HD or
IMAGE-HD PreHD groups (see Table 1). See also Sup-
plementary Table 8 for the complete set of effect sizes for
all 83 volumes. We noted that the regions following the top
12 were also disease-related (motor and frontal) and that
these regions clustered together in effect size magnitude.

FIGURE 4: Simulation results estimating statistical power as a function of total number of study participants, for varying number
of centers (Nc) and fixed number of participants per center (Nppc; Nppc = 20) and for varying Npcc and fixed Nc (Nc = 4).
Hyperparameters (intercept, effect size, and variances) were estimated directly from longitudinal PREDICT-HD 1.5T + 3T,
TRACK-HD 3T, and IMAGEHD 3T data (baseline +2 follow-ups). Treatment effect significance was assumed under a 2-tailed
t test, with α = 0.05. The number of time points was fixed at 3 for all simulations. CSF = cerebrospinal fluid. [Color figure can be
viewed at www.annalsofneurology.org]
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Pattern of Effect Sizes Consistent among Studies
Figure 3 shows a graphical representation of effect size by
region across both hemispheres of a model brain. For visu-
alization purposes, the effect size was normalized to the
maximum effect size across all 3 studies, which was
observed in the right pallidum in TRACK-HD (|t|
= 1.74). General agreement was observed among studies,
with the largest effect sizes found in the striatum and the
largest magnitudes observed in TRACK-HD. Again, this
was expected due to the higher mean DBS in TRACK-
HD. Notably, the pattern of effect sizes was visually more
similar between PREDICT-HD and TRACK-HD than
between either cohort and IMAGE-HD. This finding
reflects the closer agreement in adjusted volumes between
PREDICT-HD and TRACK-HD (see Supplementary

Table 7) and the noisier signal from IMAGE-HD due to
small sample size.

Multicenter Imaging Markers Provide Greater
Statistical Power than Clinical Markers
We used the mixed effects model trained on data from all
3 studies to estimate the statistical power of the pallidum,
caudate, putamen, insula WM, and nonventricular CSF.
This corresponded to the top 5 regions with standardized
effect size |t| > 0.5 in all 3 studies, that is, regions with a
medium effect size in each study separately. Three years of
observational data were used to inform the model,
corresponding to baseline measurements and 2 follow-ups.
Participants from both the PreHD and manifest HD

TABLE 2. Statistical Power of Selected Regional Volumes

Region Treatment Effect, % Number of Centers
Number of
PPTS per Center

Threshold PPTS
(Power > 80%)a

Caudate 20 (6–100) 20 661

20 4 (30–500) —

40 (6–100) 20 200

40 4 (30–500) 286

Pallidum 20 (6–100) 20 687

20 4 (30–500) —

40 (6–100) 20 198

40 4 (30–500) 230

Nonventricular CSF 20 (6–100) 20 939

20 4 (30–500) —

40 (6–100) 20 242

40 4 (30–500) 326

Insula white matter 20 (6–100) 20 1,445

20 4 (30–500) —

40 (6–100) 20 358

40 4 (30–500) —

Putamen 20 (6–100) 20 1,560

20 4 (30–500) —

40 (6–100) 20 378

40 4 (30–500) —

Number of participants necessary to achieve statistical power > 80%, for each volume, for various treatment effects and numbers of centers and partici-
pants per center. Inclusive ranges of number of either centers or participants are shown in parentheses.
aIn cells without data, the threshold was not reached before the maximum total number of participants (N = 2,000). CSF = cerebrospinal fluid;
PPTS = participants.
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groups of all 3 studies were used, to best reflect the condi-
tions of a clinical trial.

Figure 4 shows power as a function of the total
number of study participants for treatment effects of 20%
and 40%. Table 2 shows predicted values for the total
number of study participants necessary to reach a thresh-
old power of >80% for each of the 5 volumes; we adopted
the convention that power > 80% is considered to have
rejected type II error,36 with significance assumed under a
2-tailed t test (α = 0.05).

In both the variable-center and variable-participants-
per-center tests, the highest powers were obtained in the
caudate and pallidum with a variable number of centers.
Fixing the number of centers and varying the number of
participants per center achieved threshold power only in
the caudate, pallidum, and nonventricular CSF for treat-
ment effect of 40%. The reduction in power when fixing
the number of centers was expected because the treatment
effect variance was nonzero and hence a large number of
centers was necessary to capture the variance.

To compare with a standard outcome measure for
clinical trials, we also fit a mixed effects model to UHDRS
measures TMS, SDMT, and SWRT from the same
dataset. Here age, sex, and group were included as fixed
covariates, and center and participant nested in center as
random effects. We found that TMS only achieved pow-
ers of approximately 42%, SDMT 29%, and SWRT 25%
for up to 2,000 total study participants with a 20% treat-
ment effect. This was due to TMS, SDMT, and SWRT
being highly variable markers of disease progression,25,37

that showed only a weak dependency on time with the
model used here.

Discussion
For the first time we have performed a retrospective analy-
sis comparing structural imaging data using 3 large HD
cohorts (PREDICT-HD, TRACK-HD, and IMAGE-
HD) to determine robust imaging markers and derive
upper sample size estimates for HD clinical trials. Impor-
tantly, these 3 cohorts offer a unique opportunity to draw
inferences about sMRI markers and to determine their
capabilities as clinical trial endpoints, from small phase
1 trials to much larger phase 3 trials. This has particular
relevance to HD, which is rare and thus requires multi-
center data, even at phase 1.

We identified a common set of regions that had con-
sistently large effect sizes across multiple studies (see Fig 2).
Subcortical regions, such as caudate and putamen, are
well-established imaging markers in HD, and here they
had consistently large effect sizes across all 3 studies. In
addition, the pallidum, nonventricular CSF, and the

amygdala showed large effect sizes. These regions have
previously been reported to differ between controls and
PreHD yet are often not included in analyses, partly due
to the difficulty associated with segmenting these
structures.7,38–40 Although the absolute value of the effect
sizes for the set of regions shown in Figure 2 varies among
cohorts, these regions consistently show effect size >0.5
and are the most congruous markers across 3 studies with
very different designs. Moreover, within each study the
pattern of effect sizes was similarly distributed across the
brain (see Fig 3). Again, the magnitudes vary among
cohorts, due to the aforementioned effects of sample size,
sample noise, and disease stage of HD gene carriers.

The power analysis performed here uniquely uses
data from 3 large cohorts to validate sMRI markers, with
the caudate, pallidum, putamen, insula WM, and non-
ventricular CSF being compared. Combining the 3 cohorts
provides a broader range of data than any 1 study alone
and is therefore representative of multicenter trials with
variable participants, scanners, and clinical assessors.
To achieve statistical power of >80% for a 20% treatment
effect, the caudate required the fewest number of
participants (n = 661), and the pallidum required only
slightly more participants (n = 687). Volumetric measures
of the caudate, putamen, and ventricles have been
used in clinical trials (https://clinicaltrials.gov/ct2/show/
NCT02215616), yet the results presented in Figure 4 sug-
gest that much higher numbers of participants may be
required to detect a significant effect of medication on
regions other than the caudate, pallidum, or nonventricular
CSF and that many centers are necessary to capture inter-
center variability. We note that these estimates are an upper
bound, as the cross-study variation present in the data used
here should be higher than that for a prospective multicenter
clinical trial. Furthermore, we do not explore the potential of
composite endpoints, for example, that combine caudate and
pallidum volumes into a single marker. Additional simula-
tions (not shown) suggest that such measures could increase
power further, but we leave detailed exploration of this idea
to future work.

The PREDICT-HD study was the first large obser-
vational MRI study to commence in HD and included a
wide range of centers, scanner types, and field strengths to
recruit over 1,000 participants globally. This study reflects
the design of many clinical trials that include imaging,
with 1 recent clinical trial in HD recruiting 352
participants at 52 centers (https://clinicaltrials.gov/ct2/
show/NCT02215616). Thus, as in a clinical trial, the
PREDICT-HD data are somewhat noisier than in the
TRACK-HD study, which recruited participants at 4 cen-
ters. The noise introduced by a large number of centers is
counterbalanced by the large sample size that can be
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recruited to a study with more centers, and the analysis
performed here indicates that the increased noise and even
the inclusion of multiple field strengths does not result in
a detrimental reduction in effect sizes compared to the
2 other studies. Conversely, despite having a small sample
size, IMAGE-HD was able to identify the same set of
regions as the other 2 studies. This type of cross-study ret-
rospective evaluation is essential to rectify the differing
conclusions frequently reached when studying brain differ-
ences in sMRI analyses.

It is interesting to note that the regions with the
largest effect sizes differed among studies; in PREDICT-
HD it was the caudate, in TRACK-HD the pallidum, and
IMAGE-HD the middle cingulate gyrus. These findings
support previous results that have shown differing disease
effects across brain regions2 and suggest that the difference
may be due to inconstant inclusion criteria, which results
in the mean disease stage varying between studies. This
suggests that different markers may be appropriate for dif-
ferent disease stages. As with motor and cognitive tests
that show time-dependent sensitivity at various stages of
HD progression, the most appropriate imaging markers
for a given trial or study may depend on the disease stage
of interest. More sophisticated analysis techniques that
combine information from multiple regions and account
for disease stage, such as disease progression modelling,41

present an opportunity to derive integrated markers for
fine-grained cohort stratification.

It is important to recognize caveats in this analysis.
In large cohorts, automated tools enable the delineation of
many regions and provide a quantitatively reproducible
framework, which is particularly important for cross-study
meta-analysis. However, analyzing clinical MRI cohorts
using automated tools can introduce bias if the segmenta-
tion technique does not accurately delineate regions in
clinical cohorts; if the tools perform more poorly on clini-
cal cohorts than control cohorts, statistical distinctions
between 2 groups may be an artificial result of the tech-
nique. Quality assurance steps should be put in place to
mitigate these risks. Here we applied a tool previously
evaluated in clinical cohorts with severe pathology that
utilizes a library of clinical data as priors during the seg-
mentation process29 and performed visual QC on all
images and segmentations (see Fig 1). Although we
excluded a number of poor segmentations, we did not
exclude data that had minor errors in segmentation. We
therefore note the risks of using automated tools in studies
such as this; although the quality of the segmentations
was high overall, and we found no evidence for different
performance of GIF between our groups (both clinical
versus control and between different sites), we must
remain cautious about the use of these tools in large

cohort studies. The choice of segmentation tool will quan-
titatively influence the resulting segmentation, and thus
future work should investigate the reproducibility of the
current findings with other image processing tools.

In this analysis, we assume that PreHD and manifest
HD participants are at the same disease stage between
cohorts. However, because each study had different inclu-
sion criteria, there are likely to be systematic differences
between the cohorts. The demographics indicate that the
cohorts have slightly differing characteristics, most notably
in disease-related factors such as UHDRS-TMS, CAG
repeat length, and DBS. Despite this, our analysis shows
that regional imaging volumes follow a mostly consistent
pattern of significant between-group differences across all
studies, after adjusting for covariates. Furthermore,
although significant differences were detected for most
measurements among cohorts, the regions with the largest
group differences were consistent. Measurements from the
single-center IMAGE-HD study showed fewer significant
differences compared with the other studies, likely due to
smaller sample size.

Finally, although imaging markers showed greater
power than clinical variables, we note that this analysis
was focused on PreHD individuals, who generally exhibit
limited clinical symptoms. To date, clinical endpoints
have been used as primary endpoints in HD trials due to
their relative ease of administration and their functional
relevance.42 However, clinical endpoints often include
rater bias, as a participant’s status and previous ratings
are typically known beforehand. Composite behavioral
measures tend to show less noise than individual mea-
sures, and the composite UHDRS has been used regu-
larly in HD studies43; it was excluded from the current
study as TFC data were not available for all 3 cohorts. In
contrast to clinical measures, although sMRI measures
reduce rater bias and are strongly predictive of clinical
progression in HD,25 it is difficult to predict and detect
the effect of treatment on global imaging measures.42

Fluid biomarkers in HD have recently shown a rapid
treatment response and strong associations with clinical
and neuroimaging markers.44 However, further valida-
tion of fluid biomarkers and their stability is required,
and thus imaging markers are currently strong candidates
for clinical trial endpoints.

This analysis is the first to directly compare 3 large
HD imaging datasets and provide data-driven sample size
estimates using multistudy data. The results suggest that,
for sMRI measures, there are key regions that show consis-
tent effect sizes across multiple studies. We found that the
region with the largest effect size for each study differed
due to differences in inclusion criteria and thus mean
cohort disease stage. Importantly, caudate volume had the
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highest power and lowest required number of participants
required to reach this power. We therefore propose that
caudate volume should be a key focus in future phase
1 and phase 2 trials. This analysis demonstrates that sMRI
markers are generally robust to both participant and study
differences and confirms their potential use as clinical trial
endpoints in HD and more generally to other progressive
neurodegenerative diseases.
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