104 research outputs found
A Quality Metric for Visualization of Clusters in Graphs
Traditionally, graph quality metrics focus on readability, but recent studies
show the need for metrics which are more specific to the discovery of patterns
in graphs. Cluster analysis is a popular task within graph analysis, yet there
is no metric yet explicitly quantifying how well a drawing of a graph
represents its cluster structure. We define a clustering quality metric
measuring how well a node-link drawing of a graph represents the clusters
contained in the graph. Experiments with deforming graph drawings verify that
our metric effectively captures variations in the visual cluster quality of
graph drawings. We then use our metric to examine how well different graph
drawing algorithms visualize cluster structures in various graphs; the results
con-firm that some algorithms which have been specifically designed to show
cluster structures perform better than other algorithms.Comment: Appears in the Proceedings of the 27th International Symposium on
Graph Drawing and Network Visualization (GD 2019
Is Sustained Virological Response a Marker of Treatment Efficacy in Patients with Chronic Hepatitis C Viral Infection with No Response or Relapse to Previous Antiviral Intervention?
Background: Randomised clinical trials (RCTs) of antiviral interventions in patients with chronic hepatitis C virus (HCV) infection use sustained virological response (SVR) as the main outcome. There is sparse information on long-term mortality from RCTs. Methods: We created a decision tree model based on a Cochrane systematic review on interferon retreatment for patients who did not respond to initial therapy or who relapsed following SVR. Extrapolating data to 20 years, we modelled the outcome from three scenarios: (1) observed medium-term (5 year) annual mortality rates continue to the long term (20 years); (2) long-term annual mortality in retreatment responders falls to that of the general population while retreatment non-responders continue at the medium-term mortality; (3) long-term annual mortality in retreatment non-responders is the same as control group non-responders (i.e., the increased treatment-related medium mortality “wears off”). Results: The mean differences in life expectancy over 20 years with interferon versus control in the first, second, and third scenarios were -0.34 years (95% confidence interval (CI) -0.71 to 0.03), -0.23 years (95% CI -0.69 to 0.24), and -0.01 (95% CI -0.3 to 0.27), respectively. The life expectancy was always lower in the interferon group than in the control group in scenario 1. In scenario 3, the interferon group had a longer life expectancy than the control group only when more than 7% in the interferon group achieved SVR. Conclusions: SVR may be a good prognostic marker but does not seem to be a valid surrogate marker for assessing HCV treatment efficacy of interferon retreatment. The SVR threshold at which retreatment increases life expectancy may be different for different drugs depending upon the adverse event profile and treatment efficacy. This has to be determined for each drug by RCTs and appropriate modelling before SVR can be accepted as a surrogate marker
γ-Tubulin 2 Nucleates Microtubules and Is Downregulated in Mouse Early Embryogenesis
γ-Tubulin is the key protein for microtubule nucleation. Duplication of the γ-tubulin gene occurred several times during evolution, and in mammals γ-tubulin genes encode proteins which share ∼97% sequence identity. Previous analysis of Tubg1 and Tubg2 knock-out mice has suggested that γ-tubulins are not functionally equivalent. Tubg1 knock-out mice died at the blastocyst stage, whereas Tubg2 knock-out mice developed normally and were fertile. It was proposed that γ-tubulin 1 represents ubiquitous γ-tubulin, while γ-tubulin 2 may have some specific functions and cannot substitute for γ-tubulin 1 deficiency in blastocysts. The molecular basis of the suggested functional difference between γ-tubulins remains unknown. Here we show that exogenous γ-tubulin 2 is targeted to centrosomes and interacts with γ-tubulin complex proteins 2 and 4. Depletion of γ-tubulin 1 by RNAi in U2OS cells causes impaired microtubule nucleation and metaphase arrest. Wild-type phenotype in γ-tubulin 1-depleted cells is restored by expression of exogenous mouse or human γ-tubulin 2. Further, we show at both mRNA and protein levels using RT-qPCR and 2D-PAGE, respectively, that in contrast to Tubg1, the Tubg2 expression is dramatically reduced in mouse blastocysts. This indicates that γ-tubulin 2 cannot rescue γ-tubulin 1 deficiency in knock-out blastocysts, owing to its very low amount. The combined data suggest that γ-tubulin 2 is able to nucleate microtubules and substitute for γ-tubulin 1. We propose that mammalian γ-tubulins are functionally redundant with respect to the nucleation activity
Paneth cell - rich regions separated by a cluster of Lgr5+ cells initiate crypt fission in the intestinal stem cell niche
The crypts of the intestinal epithelium house the stem cells that ensure the continual renewal of the epithelial cells that line the intestinal tract. Crypt number increases by a process called crypt fission, the division of a single crypt into two daughter crypts. Fission drives normal tissue growth and maintenance. Correspondingly, it becomes less frequent in adulthood. Importantly, fission is reactivated to drive adenoma growth. The mechanisms governing fission are poorly understood. However, only by knowing how normal fission operates can cancer-associated changes be elucidated. We studied normal fission in tissue in three dimensions using high-resolution imaging and used intestinal organoids to identify underlying mechanisms. We discovered that both the number and relative position of Paneth cells and Lgr5+ cells are important for fission. Furthermore, the higher stiffness and increased adhesion of Paneth cells are involved in determining the site of fission. Formation of a cluster of Lgr5+ cells between at least two Paneth-cell-rich domains establishes the site for the upward invagination that initiates fission
Genome-Wide Fitness and Expression Profiling Implicate Mga2 in Adaptation to Hydrogen Peroxide
Caloric restriction extends lifespan, an effect once thought to involve attenuation of reactive oxygen species (ROS) generated by aerobic metabolism. However, recent evidence suggests that caloric restriction may in fact raise ROS levels, which in turn provides protection from acute doses of oxidant through a process called adaptation. To shed light on the molecular mechanisms of adaptation, we designed a series of genome-wide deletion fitness and mRNA expression screens to identify genes involved in adaptation to hydrogen peroxide. Combined with known transcriptional interactions, the integrated data implicate Yap1 and Skn7 as central transcription factors of both the adaptive and acute oxidative responses. They also identify the transcription factors Mga2 and Rox1 as active exclusively in the adaptive response and show that Mga2 is essential for adaptation. These findings are striking because Mga2 and Rox1 have been thought to control the response to hypoxic, not oxidative, conditions. Expression profiling of mga2Δ and rox1Δ knockouts shows that these factors most strongly regulate targets in ergosterol, fatty-acid, and zinc metabolic pathways. Direct quantitation of ergosterol reveals that its basal concentration indeed depends on Mga2, but that Mga2 is not required for the decrease in ergosterol observed during adaptation
The influence of age, gender and socio-economic status on multimorbidity patterns in primary care. first results from the multicare cohort study
Background: Multimorbidity is a phenomenon with high burden and high prevalence in the elderly. Our previous research has shown that multimorbidity can be divided into the multimorbidity patterns of 1) anxiety, depression, somatoform disorders (ADS) and pain, and 2) cardiovascular and metabolic disorders. However, it is not yet known, how these patterns are influenced by patient characteristics. The objective of this paper is to analyze the association of socio-demographic variables, and especially socio-economic status with multimorbidity in general and with each multimorbidity pattern.
Methods: The MultiCare Cohort Study is a multicentre, prospective, observational cohort study of 3.189 multimorbid patients aged 65+ randomly selected from 158 GP practices. Data were collected in GP interviews and comprehensive patient interviews. Missing values have been imputed by hot deck imputation based on Gower distance in morbidity and other variables. The association of patient characteristics with the number of chronic conditions is analysed by multilevel mixed-effects linear regression analyses.
Results: Multimorbidity in general is associated with age (+0.07 chronic conditions per year), gender (-0.27 conditions for female), education (-0.26 conditions for medium and -0.29 conditions for high level vs. low level) and income (-0.27 conditions per logarithmic unit). The pattern of cardiovascular and metabolic disorders shows comparable associations with a higher coefficient for gender (-1.29 conditions for female), while multimorbidity within the pattern of ADS and pain correlates with gender (+0.79 conditions for female), but not with age or socioeconomic status.
Conclusions: Our study confirms that the morbidity load of multimorbid patients is associated with age, gender and the socioeconomic status of the patients, but there were no effects of living arrangements and marital status. We could also show that the influence of patient characteristics is dependent on the multimorbidity pattern concerned, i.e. there seem to be at least two types of elderly multimorbid patients. First, there are patients with mainly cardiovascular and metabolic disorders, who are more often male, have an older age and a lower socio-economic status. Second, there are patients mainly with ADS and pain-related morbidity, who are more often female and equally distributed across age and socio-economic groups
Hepatitis delta infection among persons living with HIV in Europe
BACKGROUND AND AIMS: A high prevalence of hepatitis delta virus (HDV) infection, the most severe form of viral hepatitis, has been reported among persons living with HIV (PLWH) in Europe. We analysed data from a large HIV cohort collaboration to characterize HDV epidemiological trends across Europe, as well as its impact on clinical outcomes. METHODS: All PLWH with a positive hepatitis B surface antigen (HBsAg) in the Swiss HIV Cohort Study and EuroSIDA between 1988 and 2019 were tested for anti-HDV antibodies and, if positive, for HDV RNA. Demographic and clinical characteristics at initiation of antiretroviral therapy were compared between HDV-positive and HDV-negative individuals using descriptive statistics. The associations between HDV infection and overall mortality, liver-related mortality as well as hepatocellular carcinoma (HCC) were assessed using cumulative incidence plots and cause-specific multivariable Cox regression. RESULTS: Of 2793 HBsAg-positive participants, 1556 (56%) had stored serum available and were included. The prevalence of HDV coinfection was 15.2% (237/1556, 95% confidence interval [CI]: 13.5%–17.1%) and 66% (132/200) of HDV-positive individuals had active HDV replication. Among persons who inject drugs (PWID), the prevalence of HDV coinfection was 50.5% (182/360, 95% CI: 45.3%–55.7%), with similar estimates across Europe, compared to 4.7% (52/1109, 95% CI: 3.5%–5.9%) among other participants. During a median follow-up of 10.8 years (interquartile range 5.6–17.8), 82 (34.6%) HDV-positive and 265 (20.1%) HDV-negative individuals died. 41.5% (34/82) of deaths were liver-related in HDV-positive individuals compared to 17.7% (47/265) in HDV-negative individuals. HDV infection was associated with overall mortality (adjusted hazard ratio 1.6; 95% CI 1.2–2.1), liver-related death (2.9, 1.6–5.0) and HCC (6.3, 2.5–16.0). CONCLUSION: We found a very high prevalence of hepatitis delta among PWID across Europe. Among PLWH who do not inject drugs, the prevalence was similar to that reported from populations without HIV. HDV coinfection was associated with liver-related mortality and HCC incidence
Secondary Metabolites of Marine Microbes: From Natural Products Chemistry to Chemical Ecology
Marine natural products (MNPs) exhibit a wide range of pharmaceutically relevant bioactivities, including antibiotic, antiviral, anticancer, or anti-inflammatory properties. Besides marine macroorganisms such as sponges, algae, or corals, specifically marine bacteria and fungi have shown to produce novel secondary metabolites (SMs) with unique and diverse chemical structures that may hold the key for the development of novel drugs or drug leads. Apart from highlighting their potential benefit to humankind, this review is focusing on the manifold functions of SMs in the marine ecosystem. For example, potent MNPs have the ability to exile predators and competing organisms, act as attractants for mating purposes, or serve as dye for the expulsion or attraction of other organisms. A large compilation of literature on the role of MNPs in marine ecology is available, and several reviews evaluated the function of MNPs for the aforementioned topics. Therefore, we focused the second part of this review on the importance of bioactive compounds from crustose coralline algae (CCA) and their role during coral settlement, a topic that has received less attention. It has been shown that certain SMs derived from CCA and their associated bacteria are able to induce attachment and/or metamorphosis of many benthic invertebrate larvae, including globally threatened reef-building scleractinian corals. This review provides an overview on bioactivities of MNPs from marine microbes and their potential use in medicine as well as on the latest findings of the chemical ecology and settlement process of scleractinian corals and other invertebrate larvae
SPARC: a matricellular regulator of tumorigenesis
Although many clinical studies have found a correlation of SPARC expression with malignant progression and patient survival, the mechanisms for SPARC function in tumorigenesis and metastasis remain elusive. The activity of SPARC is context- and cell-type-dependent, which is highlighted by the fact that SPARC has shown seemingly contradictory effects on tumor progression in both clinical correlative studies and in animal models. The capacity of SPARC to dictate tumorigenic phenotype has been attributed to its effects on the bioavailability and signaling of integrins and growth factors/chemokines. These molecular pathways contribute to many physiological events affecting malignant progression, including extracellular matrix remodeling, angiogenesis, immune modulation and metastasis. Given that SPARC is credited with such varied activities, this review presents a comprehensive account of the divergent effects of SPARC in human cancers and mouse models, as well as a description of the potential mechanisms by which SPARC mediates these effects. We aim to provide insight into how a matricellular protein such as SPARC might generate paradoxical, yet relevant, tumor outcomes in order to unify an apparently incongruent collection of scientific literature
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
- …