3,586 research outputs found

    Baseline Characteristics And Risk Factors For Ulcer, Amputation And Severe Neuropathy In Diabetic Foot At Risk: The Brazupa Study

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Studies on diabetic foot and its complications involving a significant and representative sample of patients in South American countries are scarce. The main objective of this study was to acquire clinical and epidemiological data on a large cohort of diabetic patients from 19 centers from Brazil and focus on factors that could be associated with the risk of ulcer and amputation. Methods: This study presents cross sectional, baseline results of the BRAZUPA Study. A total of 1455 patients were included. Parameters recorded included age, gender, ethnicity, diabetes and comorbidity-related records, previous ulcer or amputation, clinical symptomatic score, foot classification and microvascular complications. Results: Patients with ulcer had longer disease duration (17.2 +/- 9.9 vs. 13.2 +/- 9.4 years; p < 0.001), and poorer glycemic control (HbA1c 9.23 +/- 2.03 vs. 8.35 +/- 1.99; p < 0.001). Independent risk factors for ulcer were male gender (OR 1.71; 95 % CI 1.2-3.7), smoking (OR 1.78; 95 % CI 1.09-2.89), neuroischemic foot (OR 20.34; 95 % CI 9.31-44.38), region of origin (higher risk for those from developed regions, OR 2.39; 95 % CI 1.47-3.87), presence of retinopathy (OR 1.68; 95 % CI 1.08-2.62) and absence of vibratory sensation (OR 7.95; 95 % CI 4.65-13.59). Risk factors for amputation were male gender (OR 2.12; 95 % CI 1.2-3.73), type 2 diabetes (OR 3.33; 95 % CI 1.01-11.1), foot at risk classification (higher risk for ischemic foot, OR 19.63; 95 % CI 3.43-112.5), hypertension (lower risk, OR 0.3; 95 % CI 0.14-0.63), region of origin (South/Southeast, OR 2.2; 95 % CI 1.1-4.42), previous history of ulcer (OR 9.66; 95 % CI 4.67-19.98) and altered vibratory sensation (OR 3.46; 95 % CI 1.64-7.33). There was no association between either outcome and ethnicity. Conclusions: Ulcer and amputation rates were high. Age at presentation was low and patients with ulcer presented a higher prevalence of neuropathy compared to ischemic foot at risk. Ischemic disease was more associated with amputations. Ethnical differences were not of great importance in a miscegenated population.8National Institutes for Science and Research (INCT)-Diabetes and ObesityNational Center for Science and Technology Development (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Minocycline inhibits glial proliferation in the H-Tx rat model of congenital hydrocephalus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reactive astrocytosis and microgliosis are important features of the pathophysiology of hydrocephalus, and persistent glial "scars" that form could exacerbate neuroinflammation, impair cerebral perfusion, impede neuronal regeneration, and alter biomechanical properties. The purpose of this study was to determine the efficacy of minocycline, an antibiotic known for its anti-inflammatory properties, to reduce gliosis in the H-Tx rat model of congenital hydrocephalus.</p> <p>Methods</p> <p>Minocycline (45 mg/kg/day i.p. in 5% sucrose at a concentration of 5-10 mg/ml) was administered to hydrocephalic H-Tx rats from postnatal day 15 to day 21, when ventriculomegaly had reached moderate to severe stages. Treated animals were compared to age-matched non-hydrocephalic and untreated hydrocephalic littermates. The cerebral cortex (both gray matter laminae and white matter) was processed for immunohistochemistry (glial fibrillary acidic protein, GFAP, for astrocytes and ionized calcium binding adaptor molecule, Iba-1, for microglia) and analyzed by qualitative and quantitative light microscopy.</p> <p>Results</p> <p>The mean number of GFAP-immunoreactive astrocytes was significantly higher in untreated hydrocephalic animals compared to both types of controls (<it>p </it>< 0.001). Minocycline treatment of hydrocephalic animals reduced the number of GFAP immunoreactive cells significantly (<it>p </it>< 0.001). Likewise, the mean number of Iba-1 immunoreactive microglia was significantly higher in untreated hydrocephalic animals compared to both types of controls (<it>p </it>< 0.001). Furthermore, no differences in the numbers of GFAP-positive astrocytes or Iba-1-positive microglia were noted between control animals receiving no minocycline and control animals receiving minocycline, suggesting that minocycline does not produce an effect under non-injury conditions. Additionally, in six out of nine regions sampled, hydrocephalic animals that received minocycline injections had significantly thicker cortices when compared to their untreated hydrocephalic littermates.</p> <p>Conclusions</p> <p>Overall, these data suggest that minocycline treatment is effective in reducing the gliosis that accompanies hydrocephalus, and thus may provide an added benefit when used as a supplement to ventricular shunting.</p

    Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells

    Get PDF
    RECK is a novel tumour suppressor gene that negatively regulates matrix metalloproteinases (MMPs) and inhibits tumour invasion, angiogenesis and metastasis. In the present study, we investigated the effects of epigallocatechin-3-gallate (EGCG), a major polyphenol in green tea, on the methylation status of the RECK gene and cancer invasion in oral squamous cell carcinoma cell lines. Our results showed that treatment of oral cancer cells with EGCG partially reversed the hypermethylation status of the RECK gene and significantly enhanced the expression level of RECK mRNA. Inhibition of MMP-2 and MMP-9 levels was also observed in these cells after treatment with EGCG. Interestingly, EGCG significantly suppressed cancer cell-invasive ability by decreasing the number of invasive foci (P<0.0001) as well as invasion depth (P<0.005) in three-dimensional collagen invasion model. Although further investigation is required to assess the extent of contribution of RECK on MMPs to the suppression of invasive behaviour, these results support the conclusion that EGCG plays a key role in suppressing cell invasion through multiple mechanisms, possibly by demethylation effect on MMP inhibitors such as RECK

    Estimation of minimally important differences in EQ-5D utility and VAS scores in cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding what constitutes an important difference on a HRQL measure is critical to its interpretation. The aim of this study was to provide a range of estimates of minimally important differences (MIDs) in EQ-5D scores in cancer and to determine if estimates are comparable in lung cancer.</p> <p>Methods</p> <p>A retrospective analysis was conducted on cross-sectional data collected from 534 cancer patients, 50 of whom were lung cancer patients. A range of minimally important differences (MIDs) in EQ-5D index-based utility (UK and US) scores and VAS scores were estimated using both anchor-based and distribution-based (1/2 standard deviation and standard error of the measure) approaches. Groups were anchored using Eastern Cooperative Oncology Group performance status (PS) ratings and FACT-G total score-based quintiles.</p> <p>Results</p> <p>For UK-utility scores, MID estimates based on PS ranged from 0.10 to 0.12 both for all cancers and for lung cancer subgroup. Using FACT-G quintiles, MIDs were 0.09 to 0.10 for all cancers, and 0.07 to 0.08 for lung cancer. For US-utility scores, MIDs ranged from 0.07 to 0.09 grouped by PS for all cancers and for lung cancer; when based on FACT-G quintiles, MIDs were 0.06 to 0.07 in all cancers and 0.05 to 0.06 in lung cancer. MIDs for VAS scores were similar for lung and all cancers, ranging from 8 to 12 (PS) and 7 to 10 (FACT-G quintiles).</p> <p>Discussion</p> <p>Important differences in EQ-5D utility and VAS scores were similar for all cancers and lung cancer, with the lower end of the range of estimates closer to the MID, i.e. 0.08 for UK-index scores, 0.06 for US-index scores, and 0.07 for VAS scores.</p

    Collaborative Enhancement of Antibody Binding to Distinct PECAM-1 Epitopes Modulates Endothelial Targeting

    Get PDF
    Antibodies to platelet endothelial cell adhesion molecule-1 (PECAM-1) facilitate targeted drug delivery to endothelial cells by “vascular immunotargeting.” To define the targeting quantitatively, we investigated the endothelial binding of monoclonal antibodies (mAbs) to extracellular epitopes of PECAM-1. Surprisingly, we have found in human and mouse cell culture models that the endothelial binding of PECAM-directed mAbs and scFv therapeutic fusion protein is increased by co-administration of a paired mAb directed to an adjacent, yet distinct PECAM-1 epitope. This results in significant enhancement of functional activity of a PECAM-1-targeted scFv-thrombomodulin fusion protein generating therapeutic activated Protein C. The “collaborative enhancement” of mAb binding is affirmed in vivo, as manifested by enhanced pulmonary accumulation of intravenously administered radiolabeled PECAM-1 mAb when co-injected with an unlabeled paired mAb in mice. This is the first demonstration of a positive modulatory effect of endothelial binding and vascular immunotargeting provided by the simultaneous binding a paired mAb to adjacent distinct epitopes. The “collaborative enhancement” phenomenon provides a novel paradigm for optimizing the endothelial-targeted delivery of therapeutic agents

    Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict

    Get PDF
    Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated

    Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries

    Get PDF
    As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.open
    corecore