6,587 research outputs found
Au/n-ZnO rectifying contact fabricated with hydrogen peroxide pretreatment
Au contacts were deposited on n -type ZnO single crystals with and without hydrogen peroxide pretreatment for the ZnO substrate. The Au/ZnO contacts fabricated on substrates without H2 O2 pretreatment were Ohmic and those with H2 O2 pretreatment were rectifying. With an aim of fabricating a good quality Schottky contact, the rectifying property of the Au/ZnO contact was systemically investigated by varying the treatment temperature and duration. The best performing Schottky contact was found to have an ideality factor of 1.15 and a leakage current of ∼ 10-7 A cm-2. A multispectroscopic study, including scanning electron microscopy, positron annihilation spectroscopy, deep level transient spectroscopy, x-ray photoelectron spectroscopy, and photoluminescence, showed that the H2 O2 treatment removed the OH impurity and created Zn-vacancy related defects hence decreasing the conductivity of the ZnO surface layer, a condition favorable for forming good Schottky contact. However, the H2 O2 treatment also resulted in a deterioration of the surface morphology, leading to an increase in the Schottky contact ideality factor and leakage current in the case of nonoptimal treatment time and temperature. © 2008 American Institute of Physics.published_or_final_versio
Hydrogen peroxide treatment induced rectifying behavior of Aun-ZnO contact
Conversion of the Aun-ZnO contact from Ohmic to rectifying with H2 O2 pretreatment was studied systematically using I-V measurements, x-ray photoemission spectroscopy, positron annihilation spectroscopy, and deep level transient spectroscopy. H2 O2 treatment did not affect the carbon surface contamination or the EC -0.31 eV deep level, but it resulted in a significant decrease of the surface OH contamination and the formation of vacancy-type defects (Zn vacancy or vacancy cluster) close to the surface. The formation of a rectifying contact can be attributed to the reduced conductivity of the surface region due to the removal of OH and the formation of vacancy-type defects. © 2007 American Institute of Physics.published_or_final_versio
Hot Streaks in Artistic, Cultural, and Scientific Careers
The hot streak, loosely defined as winning begets more winnings, highlights a
specific period during which an individual's performance is substantially
higher than her typical performance. While widely debated in sports, gambling,
and financial markets over the past several decades, little is known if hot
streaks apply to individual careers. Here, building on rich literature on
lifecycle of creativity, we collected large-scale career histories of
individual artists, movie directors and scientists, tracing the artworks,
movies, and scientific publications they produced. We find that, across all
three domains, hit works within a career show a high degree of temporal
regularity, each career being characterized by bursts of high-impact works
occurring in sequence. We demonstrate that these observations can be explained
by a simple hot-streak model we developed, allowing us to probe quantitatively
the hot streak phenomenon governing individual careers, which we find to be
remarkably universal across diverse domains we analyzed: The hot streaks are
ubiquitous yet unique across different careers. While the vast majority of
individuals have at least one hot streak, hot streaks are most likely to occur
only once. The hot streak emerges randomly within an individual's sequence of
works, is temporally localized, and is unassociated with any detectable change
in productivity. We show that, since works produced during hot streaks garner
significantly more impact, the uncovered hot streaks fundamentally drives the
collective impact of an individual, ignoring which leads us to systematically
over- or under-estimate the future impact of a career. These results not only
deepen our quantitative understanding of patterns governing individual
ingenuity and success, they may also have implications for decisions and
policies involving predicting and nurturing individuals with lasting impact
Pandemic A/H1N1 2009 Influenza Virus-like Particles Elicited Higher and Broader Immune Responses than the Commercial Panenza Vaccine
Objectives: The aim was to construct 2009 pandemic A/H1N1 influenza VLPs (virus-like particles) and compare the immunogenicity and protection efficacy with the commercial Panenza vaccine in BALB/c mouse model. Methods: VLPs derived from influenza A/Hong Kong/01/2009 (H1N1) virus were constructed by Bac-to-Bac baculovirus expression system. VLPs were purified by sucrose density gradient ultracentrifugation and then characterized by Western blotting analysis and transmission electron microscopy. After single dose vaccination with 3 µg of VLPs and equal amount of Panenza vaccine, the immune responses and efficacy of protection induced by VLPs were compared with those elicited by the Panenza vaccine in 6-8 week female BALB/c mice. Key findings: VLPs could induce higher antibody titer as determined by hemagglutinin inhibition and microneutralization assay. Furthermore, we demonstrated that VLPs induced better antibody response to neuraminidase. In addition, VLP vaccinated mice had stronger cell-mediated immune response. As a result, our VLPs conferred 100% protection while the Panenza vaccine only conferred 67% protection. Conclusion: From the results, we concluded that influenza VLPs are highly immunogenic and they are promising to be developed as an alternative strategy to vaccine production in order to control the spread of influenza viruses.published_or_final_versio
Transitional B Cells in Early Human B Cell Development – Time to Revisit the Paradigm?
The B cell repertoire is generated in the adult bone marrow by an ordered series of gene rearrangement processes that result in massive diversity of immunoglobulin (Ig) genes, and consequently an equally large number of potential specificities for antigen. As the process is essentially random, then cells exhibiting excess reactivity with self-antigens are generated and need to be removed from the repertoire before the cells are fully mature. Some of the cells are deleted, and some will undergo receptor editing to see if changing the light chain can rescue an autoreactive antibody. As a consequence, the binding properties of the B cell receptor are changed as development progresses through pre- B>>immature>>transitional>>naïve phenotypes. Using long-read, high-throughput, sequencing we have produced a unique set of sequences from these four cell types in human bone marrow and matched peripheral blood and our results describe the effects of tolerance selection on the B cell repertoire at the Ig gene level. Most strong effects of selection are seen within the heavy chain repertoire, and can be seen both in gene usage and in CDR-H3 characteristics. Age-related changes are small and only the size of the CDR-H3 shows constant and significant change in these data. The paucity of significant changes in either kappa or lambda light chain repertoires implies that either the heavy chain has more influence over autoreactivity than light chain and/or that switching between kappa and lambda light chains, as opposed to switching within the light chain loci, may effect a more successful autoreactive rescue by receptor editing. Our results show that the transitional cell population contains cells other than those that are part of the pre-B>>immature>>transitional>>naïve development pathway, since the population often shows a repertoire that is outside the trajectory of gene loss/gain between pre-B and naïve stages
A Condensation-Ordering Mechanism in Nanoparticle-Catalyzed Peptide Aggregation
Nanoparticles introduced in living cells are capable of strongly promoting
the aggregation of peptides and proteins. We use here molecular dynamics
simulations to characterise in detail the process by which nanoparticle
surfaces catalyse the self- assembly of peptides into fibrillar structures. The
simulation of a system of hundreds of peptides over the millisecond timescale
enables us to show that the mechanism of aggregation involves a first phase in
which small structurally disordered oligomers assemble onto the nanoparticle
and a second phase in which they evolve into highly ordered beta-sheets as
their size increases
Does publication bias inflate the apparent efficacy of psychological treatment for major depressive disorder? A systematic review and meta-analysis of US national institutes of health-funded trials
Background The efficacy of antidepressant medication has been shown empirically to be overestimated due to publication bias, but this has only been inferred statistically with regard to psychological treatment for depression. We assessed directly the extent of study publication bias in trials examining the efficacy of psychological treatment for depression. Methods and Findings We identified US National Institutes of Health grants awarded to fund randomized clinical trials comparing psychological treatment to control conditions or other treatments in patients diagnosed with major depressive disorder for the period 1972–2008, and we determined whether those grants led to publications. For studies that were not published, data were requested from investigators and included in the meta-analyses. Thirteen (23.6%) of the 55 funded grants that began trials did not result in publications, and two others never started. Among comparisons to control conditions, adding unpublished studies (Hedges’ g = 0.20; CI95% -0.11~0.51; k = 6) to published studies (g = 0.52; 0.37~0.68; k = 20) reduced the psychotherapy effect size point estimate (g = 0.39; 0.08~0.70) by 25%. Moreover, these findings may overestimate the "true" effect of psychological treatment for depression as outcome reporting bias could not be examined quantitatively. Conclusion The efficacy of psychological interventions for depression has been overestimated in the published literature, just as it has been for pharmacotherapy. Both are efficacious but not to the extent that the published literature would suggest. Funding agencies and journals should archive both original protocols and raw data from treatment trials to allow the detection and correction of outcome reporting bias. Clinicians, guidelines developers, and decision makers should be aware that the published literature overestimates the effects of the predominant treatments for depression
An effective placement method for the single container loading problem
© 2016 Elsevier Ltd. All rights reserved. This study investigates a three-dimensional single container loading problem, which aims to pack a given set of unequal-size rectangular boxes into a single container such that the length of the occupied space in the container is minimized. Motivated by the practical logistics instances in literature, the problem under study is formulated as a zero-one mixed integer linear programming model. Due to the NP-hardness of the studied problem, a simple but effective loading placement heuristic is proposed for solving large-size instances. The experimental results demonstrate that the developed heuristic is capable of solving the instances with more than two hundred boxes and more efficient than the state-of-the-art mixed integer linear program and existing heuristic methods
Determining the neurotransmitter concentration profile at active synapses
Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission
- …
