600 research outputs found
Palaeoclimate - A balmy Arctic
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62910/1/432814a.pd
Safeguarding people living in vulnerable conditions in the COVID-19 era through universal health coverage and social protection
The COVID-19 pandemic is unprecedented. The pandemic not only induced a public health crisis, but has led to severe economic, social, and educational crises. Across economies and societies, the distributional consequences of the pandemic have been uneven. Among groups living in vulnerable conditions, the pandemic substantially magnified the inequality gaps, with possible negative implications for these individuals' long-term physical, socioeconomic, and mental wellbeing. This Viewpoint proposes priority, programmatic, and policy recommendations that governments, resource partners, and relevant stakeholders should consider in formulating medium-term to long-term strategies for preventing the spread of COVID-19, addressing the virus's impacts, and decreasing health inequalities. The world is at a never more crucial moment, requiring collaboration and cooperation from all sectors to mitigate the inequality gaps and improve people's health and wellbeing with universal health coverage and social protection, in addition to implementation of the health in all policies approach
Augmented TLR2 Expression on Monocytes in both Human Kawasaki Disease and a Mouse Model of Coronary Arteritis
BACKGROUND: Kawasaki disease (KD) of unknown immunopathogenesis is an acute febrile systemic vasculitis and the leading cause of acquired heart diseases in childhood. To search for a better strategy for the prevention and treatment of KD, this study compared and validated human KD immunopathogenesis in a mouse model of Lactobacillus casei cell wall extract (LCWE)-induced coronary arteritis. METHODS: Recruited subjects fulfilled the criteria of KD and were admitted for intravenous gamma globulin (IVIG) treatment at the Kaohsiung Chang Gung Memorial Hospital from 2001 to 2009. Blood samples from KD patients were collected before and after IVIG treatment, and cardiovascular abnormalities were examined by transthoracic echocardiography. Wild-type male BALB/c mice (4-week-old) were intraperitoneally injected with LCWE (1 mg/mL) to induce coronary arteritis. The induced immune response in mice was examined on days 1, 3, 7, and 14 post injections, and histopathology studies were performed on days 7 and 14. RESULTS: Both human KD patients and LCWE-treated mice developed coronary arteritis, myocarditis, valvulitis, and pericarditis, as well as elevated plasma levels of interleukin (IL)-2, IL-6, IL-10, monocyte chemoattractant protein (MCP)-1, and tumor necrosis factor (TNF)-α in acute phase. Most of these proinflammatory cytokines declined to normal levels in mice, whereas normal levels were achieved in patients only after IVIG treatment, with a few exceptions. Toll-like receptor (TLR)-2, but not TLR4 surface enhancement on circulating CD14+ monocytes, was augmented in KD patients before IVIG treatment and in LCWE-treated mice, which declined in patients after IVIG treatment. CONCLUSION: This result suggests that that not only TLR2 augmentation on CD14+ monocytes might be an inflammatory marker for both human KD patients and LCWE-induced CAL mouse model but also this model is feasible for studying therapeutic strategies of coronary arteritis in human KD by modulating TLR2-mediated immune activation on CD14+ monocytes
The Quadruple Squeeze: Defining the safe operating space for freshwater use to achieve a triply green revolution in the Anthropocene
Humanity has entered a new phase of sustainability challenges, the Anthropocene, in which human development has reached a scale where it affects vital planetary processes. Under the pressure from a quadruple squeeze—from population and development pressures, the anthropogenic climate crisis, the anthropogenic ecosystem crisis, and the risk of deleterious tipping points in the Earth system—the degrees of freedom for sustainable human exploitation of planet Earth are severely restrained. It is in this reality that a new green revolution in world food production needs to occur, to attain food security and human development over the coming decades. Global freshwater resources are, and will increasingly be, a fundamental limiting factor in feeding the world. Current water vulnerabilities in the regions in most need of large agricultural productivity improvements are projected to increase under the pressure from global environmental change. The sustainability challenge for world agriculture has to be set within the new global sustainability context. We present new proposed sustainability criteria for world agriculture, where world food production systems are transformed in order to allow humanity to stay within the safe operating space of planetary boundaries. In order to secure global resilience and thereby raise the chances of planet Earth to remain in the current desired state, conducive for human development on the long-term, these planetary boundaries need to be respected. This calls for a triply green revolution, which not only more than doubles food production in many regions of the world, but which also is environmentally sustainable, and invests in the untapped opportunities to use green water in rainfed agriculture as a key source of future productivity enhancement. To achieve such a global transformation of agriculture, there is a need for more innovative options for water interventions at the landscape scale, accounting for both green and blue water, as well as a new focus on cross-scale interactions, feed-backs and risks for unwanted regime shifts in the agro-ecological landscape
Surface-initiated growth of copper using isonicotinic acid-functionalized aluminum oxide surfaces
Isonicotinate self-assembled monolayers (SAM) were prepared on alumina surfaces (A) using isonicotinic acid (iNA). These functionalized layers (iNA-A) were used for the seeded growth of copper films (Cu-iNA-A) by hydrazine hydrate-initiated electroless deposition. The films were characterized by scanning electron microscopy (SEM), electron-dispersive X-ray spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and advancing contact angle measurements. The films are Cu0 but with surface oxidation, and show a faceted morphology, which is more textured (Rq = 460 ± 90 nm) compared to the SAM (Rq = 2.8 ± 0.5 nm). In contrast, growth of copper films by SnCl2/PdCl2 catalyzed electroless deposition, using formaldehyde (CH2O) as the reducing agent, shows a nodular morphology on top of a relatively smooth surface. No copper films are observed in the absence of the isonicotinate SAM. The binding of Cu2+ to the iNA is proposed to facilitate reduction to Cu0 and create the seed for subsequent growth. The films show good adhesion to the functionalized surface
Increased CK5/CK8-Positive Intermediate Cells with Stromal Smooth Muscle Cell Atrophy in the Mice Lacking Prostate Epithelial Androgen Receptor
Results from tissue recombination experiments documented well that stromal androgen receptor (AR) plays essential roles in prostate development, but epithelial AR has little roles in prostate development. Using cell specific knockout AR strategy, we generated pes-ARKO mouse with knock out of AR only in the prostate epithelial cells and demonstrated that epithelial AR might also play important roles in the development of prostate gland. We found mice lacking the prostate epithelial AR have increased apoptosis in epithelial CK8-positive luminal cells and increased proliferation in epithelial CK5-positive basal cells. The consequences of these two contrasting results could then lead to the expansion of CK5/CK8-positive intermediate cells, accompanied by stromal atrophy and impaired ductal morphogenesis. Molecular mechanism dissection found AR target gene, TGF-β1, might play important roles in this epithelial AR-to-stromal morphogenesis modulation. Collectively, these results provided novel information relevant to epithelial AR functions in epithelial-stromal interactions during the development of normal prostate, and suggested AR could also function as suppressor in selective cells within prostate
Perceptions about data-informed decisions: an assessment of information-use in high HIV-prevalence settings in South Africa
BACKGROUND: Information-use is an integral component of a routine health information system and essential to
influence policy-making, program actions and research. Despite an increased amount of routine data collected,
planning and resource-allocation decisions made by health managers for managing HIV programs are often not
based on data. This study investigated the use of information, and barriers to using routine data for monitoring the
prevention of mother-to-child transmission of HIV (PMTCT) programs in two high HIV-prevalence districts in South
Africa.
METHODS: We undertook an observational study using a multi-method approach, including an inventory of facility
records and reports. The performance of routine information systems management (PRISM) diagnostic ‘Use of
Information’ tool was used to assess the PMTCT information system for evidence of data use in 57 health facilities
in two districts. Twenty-two in-depth interviews were conducted with key informants to investigate barriers to
information use in decision-making. Participants were purposively selected based on their positions and experience
with either producing PMTCT data and/or using data for management purposes. We computed descriptive statistics
and used a general inductive approach to analyze the qualitative data.
RESULTS: Despite the availability of mechanisms and processes to facilitate information-use in about two-thirds of the
facilities, evidence of information-use (i.e., indication of some form of information-use in available RHIS reports) was
demonstrated in 53% of the facilities. Information was inadequately used at district and facility levels to inform
decisions and planning, but was selectively used for reporting and monitoring program outputs at the provincial
level. The inadequate use of information stemmed from organizational issues such as the lack of a culture of
information-use, lack of trust in the data, and the inability of program and facility managers to analyze, interpret
and use information.
CONCLCUSIONS: Managers’ inability to use information implied that decisions for program implementation and improving
service delivery were not always based on data. This lack of data use could influence the delivery of health care services
negatively. Facility and program managers should be provided with opportunities for capacity development as well as
practice-based, in-service training, and be supported to use information for planning, management and decision-making
Team climate, intention to leave and turnover among hospital employees: Prospective cohort study
<p>Abstract</p> <p>Background</p> <p>In hospitals, the costs of employee turnover are substantial and intentions to leave among staff may manifest as lowered performance. We examined whether team climate, as indicated by clear and shared goals, participation, task orientation and support for innovation, predicts intention to leave the job and actual turnover among hospital employees.</p> <p>Methods</p> <p>Prospective study with baseline and follow-up surveys (2–4 years apart). The participants were 6,441 (785 men, 5,656 women) hospital employees under the age of 55 at the time of follow-up survey. Logistic regression with generalized estimating equations was used as an analysis method to include both individual and work unit level predictors in the models.</p> <p>Results</p> <p>Among stayers with no intention to leave at baseline, lower self-reported team climate predicted higher likelihood of having intentions to leave at follow-up (odds ratio per 1 standard deviation decrease in team climate was 1.6, 95% confidence interval 1.4–1.8). Lower co-worker assessed team climate at follow-up was also association with such intentions (odds ratio 1.8, 95% confidence interval 1.4–2.4). Among all participants, the likelihood of actually quitting the job was higher for those with poor self-reported team climate at baseline. This association disappeared after adjustment for intention to leave at baseline suggesting that such intentions may explain the greater turnover rate among employees with low team climate.</p> <p>Conclusion</p> <p>Improving team climate may reduce intentions to leave and turnover among hospital employees.</p
Multiple network properties overcome random connectivity to enable stereotypic sensory responses
Connections between neuronal populations may be genetically hardwired or random. In the insect olfactory system, projection neurons of the antennal lobe connect randomly to Kenyon cells of the mushroom body. Consequently, while the odor responses of the projection neurons are stereotyped across individuals, the responses of the Kenyon cells are variable. Surprisingly, downstream of Kenyon cells, mushroom body output neurons show stereotypy in their responses. We found that the stereotypy is enabled by the convergence of inputs from many Kenyon cells onto an output neuron, and does not require learning. The stereotypy emerges in the total response of the Kenyon cell population using multiple odor-specific features of the projection neuron responses, benefits from the nonlinearity in the transfer function, depends on the convergence:randomness ratio, and is constrained by sparseness. Together, our results reveal the fundamental mechanisms and constraints with which convergence enables stereotypy in sensory responses despite random connectivity
- …