100 research outputs found

    A Unifying Framework for Evaluating the Predictive Power of Genetic Variants Based on the Level of Heritability Explained

    Get PDF
    An increasing number of genetic variants have been identified for many complex diseases. However, it is controversial whether risk prediction based on genomic profiles will be useful clinically. Appropriate statistical measures to evaluate the performance of genetic risk prediction models are required. Previous studies have mainly focused on the use of the area under the receiver operating characteristic (ROC) curve, or AUC, to judge the predictive value of genetic tests. However, AUC has its limitations and should be complemented by other measures. In this study, we develop a novel unifying statistical framework that connects a large variety of predictive indices together. We showed that, given the overall disease probability and the level of variance in total liability (or heritability) explained by the genetic variants, we can estimate analytically a large variety of prediction metrics, for example the AUC, the mean risk difference between cases and non-cases, the net reclassification improvement (ability to reclassify people into high- and low-risk categories), the proportion of cases explained by a specific percentile of population at the highest risk, the variance of predicted risks, and the risk at any percentile. We also demonstrate how to construct graphs to visualize the performance of risk models, such as the ROC curve, the density of risks, and the predictiveness curve (disease risk plotted against risk percentile). The results from simulations match very well with our theoretical estimates. Finally we apply the methodology to nine complex diseases, evaluating the predictive power of genetic tests based on known susceptibility variants for each trait

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    Human papillomavirus and vaccination: knowledge, attitudes, and behavioural intention in adolescents and young women in Italy

    Get PDF
    This study assesses knowledge, attitudes, and behavioural intention towards human papillomavirus (HPV) infection and vaccination in a random sample of 1348 adolescents and young women aged 14–24 years in Italy. A self-administered anonymous questionnaire covered demographics; knowledge about HPV infection, cervical cancer, and HPV vaccine; the perceived risk for contracting HPV infection and/or for developing cervical cancer, the perceived benefits of a vaccination to prevent cervical cancer, and willingness to receive an HPV vaccine. Only 23.3% have heard that HPV is an infection of the genital mucosa and about cervical cancer. Those older, with at least one parent who is a health care professional, with personal, familiar, or friendly history of cervical cancer, and having underwent a health checkup in the last year with information about HPV vaccination were significantly more knowledgeable. Risk perception scores (range: 1–10) of contracting HPV infection and of developing cervical cancer were 5.8 and 6.5. Older age, not having a parent who is a health care professional, having had a personal, familiar, or friendly history of cervical cancer, and need of additional information were predictors of the perceived susceptibility of developing cervical cancer. The vast majority professed intent to receive an HPV vaccine and the significant predictors were having at least one parent who is a health care professional, a high perceived risk of contracting HPV infection and of developing cervical cancer, and a high belief towards the utility of a vaccination for preventing cervical cancer. Knowledge about HPV infection and cervical cancer should be improved with more attention to the benefit of HPV vaccination

    Enhancing Egress Drills: Preparation and Assessment of Evacuee Performance

    Get PDF
    This article explores how egress drills-specifically those related to fire incidents-are currently used, their impact on safety levels, and the insights gained from them. It is suggested that neither the merits of egress drills are well understood, nor the impact on egress performance well characterized. In addition, the manner in which they are conducted varies both between and within regulatory jurisdictions. By investigating their strengths and limitations, this article suggests opportunities for their enhancement possibly through the use of other egress models to support and expand upon the benefits provided. It is by no means suggested that drills are not important to evacuation safety-only that their inconsistent use and the interpretation of the results produced may mean we (as researchers, practitioners, regulators, and stakeholders) are not getting the maximum benefit out of this important tool

    Shedding Light on the Galaxy Luminosity Function

    Full text link
    From as early as the 1930s, astronomers have tried to quantify the statistical nature of the evolution and large-scale structure of galaxies by studying their luminosity distribution as a function of redshift - known as the galaxy luminosity function (LF). Accurately constructing the LF remains a popular and yet tricky pursuit in modern observational cosmology where the presence of observational selection effects due to e.g. detection thresholds in apparent magnitude, colour, surface brightness or some combination thereof can render any given galaxy survey incomplete and thus introduce bias into the LF. Over the last seventy years there have been numerous sophisticated statistical approaches devised to tackle these issues; all have advantages -- but not one is perfect. This review takes a broad historical look at the key statistical tools that have been developed over this period, discussing their relative merits and highlighting any significant extensions and modifications. In addition, the more generalised methods that have emerged within the last few years are examined. These methods propose a more rigorous statistical framework within which to determine the LF compared to some of the more traditional methods. I also look at how photometric redshift estimations are being incorporated into the LF methodology as well as considering the construction of bivariate LFs. Finally, I review the ongoing development of completeness estimators which test some of the fundamental assumptions going into LF estimators and can be powerful probes of any residual systematic effects inherent magnitude-redshift data.Comment: 95 pages, 23 figures, 3 tables. Now published in The Astronomy & Astrophysics Review. This version: bring in line with A&AR format requirements, also minor typo corrections made, additional citations and higher rez images adde

    Structural evolution and flip-flop recombination of chloroplast DNA in the fern genus Osmunda

    Full text link
    The evolution and recombination of chloroplast genome structure in the fern genus Osmunda were studied by comparative restriction site mapping and filter hybridization of chloroplast DNAs (cpDNAs) from three species — 0. cinnamomea, 0. claytoniana and 0. regalis . The three 144 kb circular genomes were found to be colinear in organization, indicating that no major inversions or transpositions had occurred during the approximately 70 million years since their radiation from a common ancestor. Although overall size and sequence arrangement are highly conserved in the three genomes, they differ by an extensive series of small deletions and insertions, ranging in size from 50 bp to 350 by and scattered more or less at random throughout the circular chromosomes. All three chloroplast genomes contain a large inverted repeat of approximately 10 kb in size. However, hybridizations using cloned fragments from the 0. cinnamomea and 0. regalis genomes revealed the absence of any dispersed repeats in at least 50% of the genome. Analysis with restriction enzymes that fail to cleave the 10 kb inverted repeat indicated that each of the three fern chloroplast genomes exists as an equimolar population of two isomeric circles differing only in the relative orientation of their two single copy regions. These two inversion isomers are inferred to result from high frequency intramolecular recombination between paired inverted repeat segments. In all aspects of their general organization, recombinational heterogeneity, and extent of structural rearrangement and length mutation, these fern chloroplast genomes resemble very closely the chloroplast genomes of most angiosperms.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46956/1/294_2004_Article_BF00418530.pd
    corecore