24 research outputs found
Intestinal Epithelial Serum Amyloid A Modulates Bacterial Growth In Vitro and Pro-Inflammatory Responses in Mouse Experimental Colitis
<p>Abstract</p> <p>Background</p> <p>Serum Amyloid A (SAA) is a major acute phase protein of unknown function. SAA is mostly expressed in the liver, but also in other tissues including the intestinal epithelium. SAA reportedly has anti-bacterial effects, and because inflammatory bowel diseases (IBD) result from a breakdown in homeostatic interactions between intestinal epithelia and bacteria, we hypothesized that SAA is protective during experimental colitis.</p> <p>Methods</p> <p>Intestinal SAA expression was measured in mouse and human samples. Dextran sodium sulfate (DSS) colitis was induced in SAA 1/2 double knockout (DKO) mice and in wildtype controls. Anti-bacterial effects of SAA1/2 were tested in intestinal epithelial cell lines transduced with adenoviral vectors encoding the CE/J SAA isoform or control vectors prior to exposure to live <it>Escherichia coli</it>.</p> <p>Results</p> <p>Significant levels of SAA1/SAA2 RNA and SAA protein were detected by in situ hybridization and immunohistochemistry in mouse colonic epithelium. SAA3 expression was weaker, but similarly distributed. SAA1/2 RNA was present in the ileum and colon of conventional mice and in the colon of germfree mice. Expression of SAA3 was strongly regulated by bacterial lipopolysaccharides in cultured epithelial cell lines, whereas SAA1/2 expression was constitutive and not LPS inducible. Overexpression of SAA1/2 in cultured epithelial cell lines reduced the viability of co-cultured <it>E. coli</it>. This might partially explain the observed increase in susceptibility of DKO mice to DSS colitis. SAA1/2 expression was increased in colon samples obtained from Crohn's Disease patients compared to controls.</p> <p>Conclusions</p> <p>Intestinal epithelial SAA displays bactericidal properties in vitro and could play a protective role in experimental mouse colitis. Altered expression of SAA in intestinal biopsies from Crohn's Disease patients suggests that SAA is involved in the disease process..</p
IL-3 and oncogenic Abl regulate the myeloblast transcriptome by altering mRNA stability
The growth factor interleukin-3 (IL-3) promotes the survival and growth of multipotent hematopoietic progenitors and stimulates myelopoiesis. It has also been reported to oppose terminal granulopoiesis and to support leukemic cell growth through autocrine or paracrine mechanisms. The degree to which IL-3 acts at the posttranscriptional level is largely unknown. We have conducted global mRNA decay profiling and bioinformatic analyses in 32Dcl3 myeloblasts indicating that IL-3 caused immediate early stabilization of hundreds of transcripts in pathways relevant to myeloblast function. Stabilized transcripts were enriched for AU-Response elements (AREs), and an ARE-containing domain from the interleukin-6 (IL-6) 3′-UTR rendered a heterologous gene responsive to IL-3-mediated transcript stabilization. Many IL-3-stabilized transcripts had been associated with leukemic transformation. Deregulated Abl kinase shared with IL-3 the ability to delay turnover of transcripts involved in proliferation or differentiation blockade, relying, in part, on signaling through the Mek/ Erk pathway. These findings support a model of IL-3 action through mRNA stability control and suggest that aberrant stabilization of an mRNA network linked to IL-3 contributes to leukemic cell growth. © 2009 Ernst et al
N-Terminomics/TAILS Profiling of Proteases and Their Substrates in Ulcerative Colitis
Dysregulated protease activity is often implicated in the initiation of inflammation and immune cell recruitment in gastrointestinal inflammatory diseases. Using N-terminomics/TAILS (terminal amine isotopic labeling of substrates), we compared proteases, along with their substrates and inhibitors, between colonic mucosal biopsies of healthy patients and those with ulcerative colitis (UC). Among the 1642 N-termini enriched using TAILS, increased endogenous processing of proteins was identified in UC compared to healthy patients. Changes in the reactome pathways for proteins associated with metabolism, adherens junction proteins (E-cadherin, liver-intestinal cadherin, catenin alpha-1, and catenin delta-1), and neutrophil degranulation were identified between the two groups. Increased neutrophil infiltration and distinct proteases observed in ulcerative colitis may result in extensive break down, altered processing, or increased remodeling of adherens junctions and other cellular functions. Analysis of the preferred proteolytic cleavage sites indicated that the majority of proteolytic activity and processing comes from host proteases, but that key microbial proteases may also play a role in maintaining homeostasis. Thus, the identification of distinct proteases and processing of their substrates improves the understanding of dysregulated proteolysis in normal intestinal physiology and ulcerative colitis
Activator protein-1 signalling pathway and apoptosis are modulated by poly(ADP-ribose) polymerase-1 in experimental colitis
Poly(ADP-ribose) polymerase-1 (PARP-1) is activated in response to DNA injury in the nucleus of eukaryotic cells and has been implicated in intestinal barrier dysfunction during inflammatory bowel diseases. In this study we investigated whether PARP-1 may regulate the inflammatory response of experimental colitis at the level of signal transduction mechanisms. Mice genetically deficient of PARP-1 (PARP-1(−/−)) and wild-type littermates were subjected to rectal instillation of trinitrobenzene sulphonic acid (TNBS). Signs of inflammation were monitored for 14 days. In wild-type mice, TNBS treatment resulted in colonic ulceration and marked apoptosis, which was associated with decreased colon content of the antiapoptotic protein Bcl-2, whereas the proapoptotic Bax was unchanged. Elevated levels of plasma nitrate/nitrite, metabolites of nitric oxide (NO), were also found. These inflammatory events were associated with activation of c-Jun-NH(2) terminal kinase (JNK), phosphorylation of c-Jun and activation of the nuclear transcription factor activator protein-1 (AP-1) in the colon. In contrast, PARP-1(−/−) mice exhibited a significant reduction of colon damage and apoptosis, which was associated with increased colonic expression of Bcl-2 and lower levels of plasma nitrate/nitrite when compared to wild-type mice. Amelioration of colon damage was associated with a significant reduction of the activation of JNK and reduction of the DNA binding of AP-1. The data indicate that PARP-1 exerts a pathological role in colitis possibly by regulating the early stress-related transcriptional response through a positive modulation of the AP-1 and JNK pathways
The Flavonoid Luteolin Worsens Chemical-Induced Colitis in NF-κBEGFP Transgenic Mice through Blockade of NF-κB-Dependent Protective Molecules
BACKGROUND: The flavonoid luteolin has anti-inflammatory properties both in vivo and in vitro. However, the impact of luteolin on experimental models of colitis is unknown. METHODOLOGY/PRINCIPAL FINDINGS: To address the therapeutic impact of luteolin, NF-κB(EGFP) transgenic mice were fed a chow diet containing 2% luteolin- or isoflavone-free control chow (AIN-76), and acute colitis was induced using 3% dextran sodium sulfate (DSS). Additionally, development of spontaneous colitis was evaluated in IL-10(−/−);NF-κB(EGFP) transgenic mice fed 2% luteolin chow diet or control chow diet. Interestingly, NF-κB(EGFP) transgenic mice exposed to luteolin showed worse DSS-induced colitis (weight loss, histological scores) compared to control-fed mice, whereas spontaneous colitis in IL-10(−/−);NF-κB(EGFP) mice was significantly attenuated. Macroscopic imaging of live resected colon showed enhanced EGFP expression (NF-κB activity) in luteolin-fed mice as compared to control-fed animals after DSS exposure, while cecal EGFP expression was attenuated in luteolin-fed IL-10(−/−) mice. Interestingly, confocal microscopy showed that EGFP positive cells were mostly located in the lamina propria and not in the epithelium. Caspase 3 activation was significantly enhanced whereas COX-2 gene expression was reduced in luteolin-fed, DSS-exposed NF-κB(EGFP) transgenic mice as assessed by Western blot and immunohistochemical analysis. In vitro, luteolin sensitized colonic epithelial HT29 cells to TNFα-induced apoptosis, caspase 3 activation, DNA fragmentation and reduced TNFα-induced C-IAP1, C-IAP2 and COX-2 gene expression. CONCLUSIONS/SIGNIFICANCE: We conclude that while luteolin shows beneficial effects on spontaneous colitis, it aggravates DSS-induced experimental colitis by blocking NF-κB-dependent protective molecules in enterocytes
Cyanidin-3-Glucoside Suppresses Cytokine-Induced Inflammatory Response in Human Intestinal Cells: Comparison with 5-Aminosalicylic Acid
The potential use of polyphenols in the prevention and treatment of chronic inflammatory diseases has been extensively investigated although the mechanisms involved in cellular signaling need to be further elucidated. Cyanidin-3-glucoside is a typical anthocyanin of many pigmented fruits and vegetables widespread in the human diet. In the present study, the protection afforded by cyanidin-3-glucoside against cytokine-triggered inflammatory response was evaluated in the human intestinal HT-29 cell line, in comparison with 5-aminosalicylic acid, a well-established anti-inflammatory drug, used in inflammatory bowel disease. For this purpose, some key inflammatory mediators and inflammatory enzymes were examined. Our data showed that cyanidin-3-glucoside reduced cytokine-induced inflammation in intestinal cells, in terms of NO, PGE(2) and IL-8 production and of iNOS and COX-2 expressions, at a much lower concentration than 5-aminosalicylic acid, suggesting a higher anti-inflammatory efficiency. Interestingly, cyanidin-3-glucoside and 5-aminosalicylic acid neither prevented IkB-α degradation nor the activation of NF-kB, but significantly reduced cytokine-induced levels of activated STAT1 accumulated in the cell nucleus. In addition, we established that phosphorylated p38 MAPK was not involved in the protective effect of cyanidin-3-glucoside or 5-aminosalicylic acid. Taking into account the high concentrations of dietary anthocyanins potentially reached in the gastrointestinal tract, cyanidin-3-glucoside may be envisaged as a promising nutraceutical giving complementary benefits in the context of inflammatory bowel disease