183 research outputs found

    On-chip beam rotators, polarizers and adiabatic mode converters through low-loss waveguides with variable cross-sections

    Get PDF
    Photonics integrated circuitry would benefit considerably from the ability to arbitrarily control waveguide cross-sections with high precision and low loss, in order to provide more degrees of freedom in manipulating propagating light. Here, we report on a new optical-fibres-compatible glass waveguide by femtosecond laser writing, namely spherical phase induced multi-core waveguide (SPIM-WG), which addresses this challenging task with three dimensional on-chip light control. Precise deformation of cross-sections is achievable along the waveguide, with shapes and sizes finely controllable of high resolution in both horizontal and vertical transversal directions. We observed that these waveguides have high refractive index contrast of 0.017, low propagation loss of 0.14 dB/cm, and very low coupling loss of 0.19 dB coupled from a single mode fibre. SPIM-WG devices were easily fabricated that were able to perform on-chip beam rotation through varying angles, or manipulate polarization state of propagating light for target wavelengths. We also demonstrated SPIM-WG mode converters that provide arbitrary adiabatic mode conversion with high efficiency between symmetric and asymmetric non-uniform modes; examples include circular, elliptical modes and asymmetric modes from ppKTP waveguides which are generally applied in frequency conversion and quantum light sources. Created inside optical glass, these waveguides and devices have the capability to operate across ultra-broad bands from visible to infrared wavelengths. The compatibility with optical fibre also paves the way toward packaged photonic integrated circuitry, which usually needs input and output fibre connections

    Escherichia coli induces apoptosis and proliferation of mammary cells

    Get PDF
    Mammary cell apoptosis and proliferation were assessed after injection of Escherichia coli into the left mammary quarters of six cows. Bacteriological analysis of foremilk samples revealed coliform infection in the injected quarters of four cows. Milk somatic cell counts increased in these quarters and peaked at 24 h after bacterial injection. Body temperature also increased, peaking at 12 h postinjection, The number of apoptotic cells was significantly higher in the mastitic tissue than in the uninfected control. Expression of Bax and interleukin-1 beta converting enzyme increased in the mastitic tissue at 24 h and 72 h postinfection, whereas Bcl-2 expression decreased at 24 h but did not differ significantly from the control at 72 h postinfection, Induction of matrix metalloproteinase-g, stromelysin-1 and urokinase-type plasminogen activator was also observed in the mastitic tissue. Moreover, cell proliferation increased in the infected tissue, These results demonstrate that Escherichia coli-induced mastitis promotes apoptosis and cell proliferation

    Epithelial-Mesenchymal Transition in Cells Expanded In Vitro from Lineage-Traced Adult Human Pancreatic Beta Cells

    Get PDF
    BACKGROUND: In-vitro expansion of functional beta cells from adult human islets is an attractive approach for generating an abundant source of cells for beta-cell replacement therapy of diabetes. Using genetic cell-lineage tracing we have recently shown that beta cells cultured from adult human islets undergo rapid dedifferentiation and proliferate for up to 16 population doublings. These cells have raised interest as potential candidates for redifferentiation into functional insulin-producing cells. Previous work has associated dedifferentiation of cultured epithelial cells with epithelial-mesenchymal transition (EMT), and suggested that EMT generates cells with stem cell properties. Here we investigated the occurrence of EMT in these cultures and assessed their stem cell potential. METHODOLOGY/PRINCIPAL FINDINGS: Using cell-lineage tracing we provide direct evidence for occurrence of EMT in cells originating from beta cells in cultures of adult human islet cells. These cells express multiple mesenchymal markers, as well as markers associated with mesenchymal stem cells (MSC). However, we do not find evidence for the ability of such cells, nor of cells in these cultures derived from a non-beta-cell origin, to significantly differentiate into mesodermal cell types. CONCLUSIONS/SIGNIFICANCE: These findings constitute the first demonstration based on genetic lineage-tracing of EMT in cultured adult primary human cells, and show that EMT does not induce multipotency in cells derived from human beta cells

    γ-Tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signalling pathways

    Get PDF
    Tocotrienol-rich fraction (TRF) has demonstrated antiproliferative effect on prostate cancer (PCa) cells. To elucidate this anticancer property in PCa cells, this study aimed, first, to identify the most potent isomer for eliminating PCa cells; and second, to decipher the molecular pathway responsible for its activity. Results showed that the inhibitory effect of γ-tocotrienol was most potent, which resulted in induction of apoptosis as evidenced by activation of pro-caspases and the presence of sub-G1 cell population. Examination of the pro-survival genes revealed that the γ-tocotrienol-induced cell death was associated with suppression of NF-κB, EGF-R and Id family proteins (Id1 and Id3). Meanwhile, γ-tocotrienol treatment also resulted in the induction of JNK-signalling pathway and inhibition of JNK activity by a specific inhibitor (SP600125) was able to partially block the effect of γ-tocotrienol. Interestingly, γ-tocotrienol treatment led to suppression of mesenchymal markers and the restoration of E-cadherin and γ-catenin expression, which was associated with suppression of cell invasion capability. Furthermore, a synergistic effect was observed when cells were co-treated with γ-tocotrienol and Docetaxel. Our results suggested that the antiproliferative effect of γ-tocotrienol act through multiple-signalling pathways, and demonstrated for the first time the anti-invasion and chemosensitisation effect of γ-tocotrienol against PCa cells

    Investigation of three new mouse mammary tumor cell lines as models for transforming growth factor (TGF)-β and Neu pathway signaling studies: identification of a novel model for TGF-β-induced epithelial-to-mesenchymal transition

    Get PDF
    INTRODUCTION: This report describes the isolation and characterization of three new murine mammary epithelial cell lines derived from mammary tumors from MMTV (mouse mammary tumor virus)/activated Neu + TβRII-AS (transforming growth factor [TGF]-β type II receptor antisense RNA) bigenic mice (BRI-JM01 and BRI-JM05 cell lines) and MMTV/activated Neu transgenic mice (BRI-JM04 cell line). METHODS: The BRI-JM01, BRI-JM04, and BRI-JM05 cell lines were analyzed for transgene expression, their general growth characteristics, and their sensitivities to several growth factors from the epidermal growth factor (EGF) and TGF-β families (recombinant human EGF, heregulin-β(1 )and TGF-β(1)). The BRI-JM01 cells were observed to undergo a striking morphologic change in response to TGF-β(1), and they were therefore further investigated for their ability to undergo a TGF-β-induced epithelial-to-mesenchymal transition (EMT) using motility assays and immunofluorescence microscopy. RESULTS: We found that two of the three cell lines (BRI-JM04 and BRI-JM05) express the Neu transgene, whereas, unexpectedly, both of the cell lines that were established from MMTV/activated Neu + TβRII-AS bigenic tumors (BRI-JM01 and BRI-JM05) do not express the TβRII-AS transgene. The cuboidal BRI-JM01 cells exhibit a short doubling time and are able to form confluent monolayers. The BRI-JM04 and BRI-JM05 cell lines are morphologically much less uniform, grow at a much slower rate, and do not form confluent monolayers. Only the BRI-JM05 cells can form colonies in soft agar. In contrast, all three cell lines form colonies in Matrigel, although the BRI-JM04 and BRI-JM05 cell lines do so more efficiently than the BRI-JM01 cell line. All three cell lines express the cell surface marker E-cadherin, confirming their epithelial character. Proliferation assays showed that the three cell lines respond differently to recombinant human EGF and heregulin-β(1), and that all are growth inhibited by TGF-β(1), but that only the BRI-JM01 cell line undergoes an EMT and exhibits increased motility upon TGF-β(1 )treatment. CONCLUSION: We suggest that the BRI-JM04 and BRI-JM05 cell lines can be used to investigate Neu oncogene driven mammary tumorigenesis, whereas the BRI-JM01 cell line will be useful for studying TGF-β(1)-induced EMT

    Transcription profiles of non-immortalized breast cancer cell lines

    Get PDF
    BACKGROUND: Searches for differentially expressed genes in tumours have made extensive use of array technology. Most samples have been obtained from tumour biopsies or from established tumour-derived cell lines. Here we compare cultures of non-immortalized breast cancer cells, normal non-immortalized breast cells and immortalized normal and breast cancer cells to identify which elements of a defined set of well-known cancer-related genes are differentially expressed. METHODS: Cultures of cells from pleural effusions or ascitic fluids from breast cancer patients (MSSMs) were used in addition to commercially-available normal breast epithelial cells (HMECs), established breast cancer cell lines (T-est) and established normal breast cells (N-est). The Atlas Human Cancer 1.2 cDNA expression array was employed. The data obtained were analysed using widely-available statistical and clustering software and further validated through real-time PCR. RESULTS: According to Significance Analysis of Microarray (SAM) and AtlasImage software, 48 genes differed at least 2-fold in adjusted intensities between HMECs and MSSMs (p < 0.01). Some of these genes have already been directly linked with breast cancer, metastasis and malignant progression, whilst others encode receptors linked to signal transduction pathways or are otherwise related to cell proliferation. Fifty genes showed at least a 2.5-fold difference between MSSMs and T-est cells according to AtlasImage, 2-fold according to SAM. Most of these classified as genes related to metabolism and cell communication. CONCLUSION: The expression profiles of 1176 genes were determined in finite life-span cultures of metastatic breast cancer cells and of normal breast cells. Significant differences were detected between the finite life-span breast cancer cell cultures and the established breast cancer cell lines. These data suggest caution in extrapolating information from established lines for application to clinical cancer research

    Hyperoxic Treatment Induces Mesenchymal-to-Epithelial Transition in a Rat Adenocarcinoma Model

    Get PDF
    Tumor hypoxia is relevant for tumor growth, metabolism and epithelial-to-mesenchymal transition (EMT). We report that hyperbaric oxygen (HBO) treatment induced mesenchymal-to-epithelial transition (MET) in a dimetyl-α-benzantracene induced mammary rat adenocarcinoma model, and the MET was associated with extensive coordinated gene expression changes and less aggressive tumors. One group of tumor bearing rats was exposed to HBO (2 bar, pO2 = 2 bar, 4 exposures à 90 minutes), whereas the control group was housed under normal atmosphere (1 bar, pO2 = 0.2 bar). Treatment effects were determined by assessment of tumor growth, tumor vascularisation, tumor cell proliferation, cell death, collagen fibrils and gene expression profile. Tumor growth was significantly reduced (∼16%) after HBO treatment compared to day 1 levels, whereas control tumors increased almost 100% in volume. Significant decreases in tumor cell proliferation, tumor blood vessels and collagen fibrils, together with an increase in cell death, are consistent with tumor growth reduction and tumor stroma influence after hyperoxic treatment. Gene expression profiling showed that HBO induced MET. In conclusion, hyperoxia induced MET with coordinated expression of gene modules involved in cell junctions and attachments together with a shift towards non-tumorigenic metabolism. This leads to more differentiated and less aggressive tumors, and indicates that oxygen per se might be an important factor in the “switches” of EMT and MET in vivo. HBO treatment also attenuated tumor growth and changed tumor stroma, by targeting the vascular system, having anti-proliferative and pro-apoptotic effects

    A Toxin-Antitoxin Module in Bacillus subtilis Can Both Mitigate and Amplify Effects of Lethal Stress

    Get PDF
    Bacterial type-2 (protein-protein) toxin-antitoxin (TA) modules are two-gene operons that are thought to participate in the response to stress. Previous work with Escherichia coli has led to a debate in which some investigators conclude that the modules protect from stress, while others argue that they amplify lethal stress and lead to programmed cell death. To avoid ambiguity arising from the presence of multiple TA modules in E. coli, the effect of the sole type-2 toxin-antitoxin module of Bacillus subtilis was examined for several types of lethal stress.Genetic knockout of the toxin gene, ndoA (ydcE), conferred protection to lethal stressors that included kanamycin, moxifloxacin, hydrogen peroxide, and UV irradiation. However, at low doses of UV irradiation the ndoA deficiency increased lethality. Indeed, gradually increasing UV dose with the ndoA mutant revealed a crossover response--from the mutant being more sensitive than wild-type cells to being less sensitive. For high temperature and nutrient starvation, the toxin deficiency rendered cells hypersensitive. The ndoA deficiency also reduced sporulation frequency, indicating a role for toxin-antitoxin modules in this developmental process. In the case of lethal antimicrobial treatment, deletion of the toxin eliminated a surge in hydrogen peroxide accumulation observed in wild-type cells.A single toxin-antitoxin module can mediate two opposing effects of stress, one that lowers lethality and another that raises it. Protective effects are thought to arise from toxin-mediated inhibition of translation based on published work. The enhanced, stress-mediated killing probably involves toxin-dependent accumulation of reactive oxygen species, since a deficiency in the NdoA toxin suppressed peroxide accumulation following antimicrobial treatment. The type and perhaps the level of stress appear to be important for determining whether this toxin will have a protective or detrimental effect
    corecore