27 research outputs found

    Quantitative assessment of sewer overflow performance with climate change in northwest England

    Get PDF
    Changes in rainfall patterns associated with climate change can affect the operation of a combined sewer system, with the potential increase in rainfall amount. This could lead to excessive spill frequencies and could also introduce hazardous substances into the receiving waters, which, in turn, would have an impact on the quality of shellfish and bathing waters. This paper quantifies the spilling volume, duration and frequency of 19 combined sewer overflows (CSOs) to receiving waters under two climate change scenarios, the high (A1FI), and the low emissions (B1) scenarios, simulated by three global climate models (GCMs), for a study catchment in northwest England. The future rainfall is downscaled, using climatic variables from HadCM3, CSIRO and CGCM2 GCMs, with the use of a hybrid generalized linear–artificial neural network model. The results from the model simulation for the future in 2080 showed an annual increase of 37% in total spill volume, 32% in total spill duration, and 12% in spill frequency for the shellfish water limiting requirements. These results were obtained, under the high emissions scenario, as projected by the HadCM3 as maximum. Nevertheless, the catchment drainage system is projected to cope with the future conditions in 2080 by all three GCMs. The results also indicate that under scenario B1, a significant drop was projected by CSIRO, which in the worst case could reach up to 50% in spill volume, 39% in spill duration and 25% in spill frequency. The results further show that, during the bathing season, a substantial drop is expected in the CSO spill drivers, as predicted by all GCMs under both scenarios

    Central Santa Catarina coastal dunefields chronology and their relation to relative sea level and climatic changes

    Get PDF
    During the past decades, there have been contrarian explanations for the formation and stabilization of coastal dunefields: while many authors believe the dunes formation would be enhanced by falling sea level, others argue that a rising or stable sea level context would be favorable. For Brazilian coastal dunefields, the second hypothesis seems to be more consistent with the luminescence ages found so far; however, most of these data were obtained without using the SAR protocol. Another point of concern is the role of climate change in the aeolian system, which is still not very clear. The aim of this paper is to try to clarify these two questions. To this end, five coastal dunefields were selected in central Santa Catarina coast. The remote sensing and dating results allowed the discrimination and mapping of at least four aeolian generations. Their age distribution in relation to the global curve of relative sea level variation during the Late Pleistocene allows us to suggest that the formation of Aeolian dunefields in the coastal context is supported by stable relative sea level. However, relative sea level is not the only determinant for the formation and preservation of the aeolian coastal dunes. Evidences of climatic control indicate that the initiation of dunefields would be favored by periods of less humidity while their stabilization would occur preferably during the periods of rain intensification, connected to monsoon activity

    E-OBS precipitation dataset v12.0 0.25 deg. regular grid

    No full text
    The datafile contains gridded data on a 0.25 degree regular grid of daily precipitation sums in mm. We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu

    Architecture of a pan-European framework for Integrated Soil Water Erosion Assessment

    No full text
    Soil erosion implications on future food security are gaining global attention because in many areas worldwide there is an imbalance between soil loss and its subsequent deposition. Soil erosion is a complex phenomenon affected by many factors such as climate, topography and land cover (in\ud particular forest resources, natural vegetation and agriculture) while directly influencing water sediment transport, the quality of water resources and water storage loss. A modeling architecture, based on the Revised Universal Soil Loss Equation, is proposed and applied to evaluate and validate at regional scale potential and actual soil water erosion, enabling it to be linked to other involved natural resources. The methodology benefits from the array programming paradigm with semantic constraints (lightweight array behavioural contracts provided by the Mastrave library) to concisely implement models as composition of interoperable modules and to process heterogeneous data.\u
    corecore