55 research outputs found

    Intolerance of uncertainty and mental wellbeing: serial mediation by rumination and fear of COVID-19

    Get PDF
    The novel coronavirus-2019 (COVID-19) pandemic has become globally widespread with millions of confirmed cases and many countries implementing various levels of quarantine. Therefore, it is important to investigate the psychological consequences of this process, given the unique situation that has been experienced globally. Therefore, the present study examined whether intolerance of uncertainty was related to mental wellbeing and whether this relationship was mediated by rumination and fear of COVID-19. The sample comprised 1772 Turkish individuals (aged between 18 and 73 years) from 79 of 81 cities in Turkey, who completed measures of mental wellbeing, intolerance of uncertainty, rumination, and fear of COVID-19. Results of serial mediation analyses showed that intolerance of uncertainty had a significant direct effect on mental wellbeing. Rumination and fear of COVID-19, in combination, serially mediated the association between intolerance of uncertainty and mental wellbeing. The findings are discussed within the framework of the psychological consequences of the COVID-19 pandemic and related literature

    Dedifferentiation and Proliferation of Mammalian Cardiomyocytes

    Get PDF
    It has long been thought that mammalian cardiomyocytes are terminally-differentiated and unable to proliferate. However, myocytes in more primitive animals such as zebrafish are able to dedifferentiate and proliferate to regenerate amputated cardiac muscle.Here we test the hypothesis that mature mammalian cardiomyocytes retain substantial cellular plasticity, including the ability to dedifferentiate, proliferate, and acquire progenitor cell phenotypes. Two complementary methods were used: 1) cardiomyocyte purification from rat hearts, and 2) genetic fate mapping in cardiac explants from bi-transgenic mice. Cardiomyocytes isolated from rodent hearts were purified by multiple centrifugation and Percoll gradient separation steps, and the purity verified by immunostaining and RT-PCR. Within days in culture, purified cardiomyocytes lost their characteristic electrophysiological properties and striations, flattened and began to divide, as confirmed by proliferation markers and BrdU incorporation. Many dedifferentiated cardiomyocytes went on to express the stem cell antigen c-kit, and the early cardiac transcription factors GATA4 and Nkx2.5. Underlying these changes, inhibitory cell cycle molecules were suppressed in myocyte-derived cells (MDCs), while microRNAs known to orchestrate proliferation and pluripotency increased dramatically. Some, but not all, MDCs self-organized into spheres and re-differentiated into myocytes and endothelial cells in vitro. Cell fate tracking of cardiomyocytes from 4-OH-Tamoxifen-treated double-transgenic MerCreMer/ZEG mouse hearts revealed that green fluorescent protein (GFP) continues to be expressed in dedifferentiated cardiomyocytes, two-thirds of which were also c-kit(+).Contradicting the prevailing view that they are terminally-differentiated, postnatal mammalian cardiomyocytes are instead capable of substantial plasticity. Dedifferentiation of myocytes facilitates proliferation and confers a degree of stemness, including the expression of c-kit and the capacity for multipotency

    UVCANDELS: Catalogs of Photometric Redshifts and Galaxy Physical Properties

    Get PDF
    © 2024 The Author(s). This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/The UltraViolet imaging of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey Fields (UVCANDELS) program provides deep Hubble Space Telescope (HST) F275W and F435W imaging over four CANDELS fields (GOODS-N, GOODS-S, COSMOS, and Extended Groth Strip). We combine this newly acquired UV imaging with existing HST imaging from CANDELS as well as existing ancillary data to obtain robust photometric redshifts and reliable estimates for galaxy physical properties for over 150,000 galaxies in the ∼430 arcmin2 UVCANDELS area. Here, we leverage the power of the new UV photometry to not only improve the photometric redshift measurements in these fields, but also constrain the full redshift probability distribution combining multiple redshift-fitting tools. Furthermore, using the full UV-to-IR photometric data set, we measure the galaxy physical properties by fitting templates from population synthesis models with two different parameterizations (flexible and fixed form) of the star formation histories (SFHs). Compared to the flexible SFH parameterization, we find that the fixed-form SFHs systematically underestimate the galaxy stellar masses, both at the low-mass (≲109 M ⊙) and high-mass (≳1010 M ⊙) end, by as much as ∼0.5 dex. This underestimation is primarily due the limited ability of fixed-form SFH parameterization to simultaneously capture the chaotic nature of star formation in these galaxies.Peer reviewe

    Some environmental factors influencing phytoplankton in the Southern Ocean around South Georgia

    Full text link
    Data on phytoplankton and zooplankton biomass, and physical and chemical variables, are combined with a published multivariate description of diatom species composition to interpret variation within an area around South Georgia surveyed during an austral summer. Large-scale species distributions could be equated to the different water masses which reflected the interaction of the Antarctic Circumpolar Current with the island and the Scotia Ridge. Small-scale factors were found to act at an interstation scale and imposed local variation on the biogeographic pattern. Nutrient depletion could be related to phytoplankton biomass but no single inorganic nutrient of those measured (NO 3 −N, PO 4 −P and silica) could be identified as important. The ratio Si:P appeared to be more important as an ecological factor. The impact of grazing by krill and other zooplankton could only be resolved as differences in phytoplankton biomass and phaeopigment content. Diatom species composition showed a relation to local krill abundance very different from that suggested by published studies, but could be explained as the effect of earlier grazing outside the study area. The effects of vertical mixing could not account for interstation differences as pycnocline depth was uniformly greater than euphotic depth, and vertical stability very low. Some comparison was made with data collected in 1926–31 by the Discovery Investigations. Significant differences in the distribution of certain taxa such as Chaetoceros criophilum and C. socialis were traced to major differences in hydrology.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46983/1/300_2004_Article_BF00443379.pd
    corecore