644 research outputs found

    Calcium binding to bovine brain tubulin

    Get PDF

    Universal dark halo scaling relation for the dwarf spheroidal satellites

    Full text link
    Motivated by a recently found interesting property of the dark halo surface density within a radius, rmaxr_{\rm max}, giving the maximum circular velocity, VmaxV_{\rm max}, we investigate it for dark halos of the Milky Way's and Andromeda's dwarf satellites based on cosmological simulations. We select and analyze the simulated subhalos associated with Milky Way-sized dark halos and find that the values of their surface densities, ΣVmax\Sigma_{V_{\rm max}}, are in good agreement with those for the observed dwarf spheroidal satellites even without employing any fitting procedures. This implies that this surface density would not be largely affected by any baryonic feedbacks and thus universal. Moreover, all subhalos on the small scales of dwarf satellites are expected to obey the relation ΣVmaxVmax\Sigma_{V_{\rm max}}\propto V_{\rm max}, irrespective of differences in their orbital evolutions, host halo properties, and observed redshifts. Therefore, we find that the universal scaling relation for dark halos on dwarf galaxy mass scales surely exists and provides us important clues to understanding fundamental properties of dark halos. We also investigate orbital and dynamical evolutions of subhalos to understand the origin of this universal dark halo relation and find that most of subhalos evolve generally along the rmaxVmaxr_{\rm max}\propto V_{\rm max} sequence, even though these subhalos have undergone different histories of mass assembly and tidal stripping. This sequence, therefore, should be the key feature to understand the nature of the universality of ΣVmax\Sigma_{V_{\rm max}}.Comment: 12 pages, 5 figures and 3 tables, submitted to Ap

    Cosmic Star Formation Activity at z=2.2 Probed by H-alpha Emission Line Galaxies

    Full text link
    We present a pilot narrow-band survey of H-alpha emitters at z=2.2 in the Great Observatories Origins Deep Survey North (GOODS-N) field with MOIRCS instrument on the Subaru telescope. The survey reached a 3 sigma limiting magnitude of 23.6 (NB209) which corresponds to a 3 sigma limiting line flux of 2.5 x 10^-17 erg s^-1 cm^-2 over a 56 arcmnin^2 contiguous area (excluding a shallower area). From this survey, we have identified 11 H-alpha emitters and one AGN at z=2.2 on the basis of narrow-band excesses and photometric redshifts. We obtained spectra for seven new objects among them, including one AGN, and an emission line above 3 sigma is detected from all of them. We have estimated star formation rates (SFR) and stellar masses (M_star) for individual galaxies. The average SFR and M_star is 27.8M_solar yr^-1 and 4.0 x 10^10M_solar, respectivly. Their specific star formation rates are inversely correlated with their stellar masses. Fitting to a Schechter function yields the H-alpha luminosity function with log L = 42.82, log phi = -2.78 and alpha = -1.37. The average star formation rate density in the survey volume is estimated to be 0.31M_solar yr^-1Mpc^-3 according to the Kennicutt relation between H-alpha luminosity and star formation rate. We compare our H-alpha emitters at z=2.2 in GOODS-N with narrow-band line emitters in other field and clusters to see their time evolution and environmental dependence. We find that the star formation activity is reduced rapidly from z=2.5 to z=0.8 in the cluster environment, while it is only moderately changed in the field environment. This result suggests that the timescale of galaxy formation is different among different environments, and the star forming activities in high density regions eventually overtake those in lower density regions as a consequence of "galaxy formation bias" at high redshifts.Comment: Accepted for publication in PASJ Subaru Special Issue, 11 pages, 10 figure

    "Direct" Gas-phase Metallicities, Stellar Properties, and Local Environments of Emission-line Galaxies at Redshift below 0.90

    Get PDF
    Using deep narrow-band (NB) imaging and optical spectroscopy from the Keck telescope and MMT, we identify a sample of 20 emission-line galaxies (ELGs) at z=0.065-0.90 where the weak auroral emission line, [OIII]4363, is detected at >3\sigma. These detections allow us to determine the gas-phase metallicity using the "direct'' method. With electron temperature measurements and dust attenuation corrections from Balmer decrements, we find that 4 of these low-mass galaxies are extremely metal-poor with 12+log(O/H) <= 7.65 or one-tenth solar. Our most metal-deficient galaxy has 12+log(O/H) = 7.24^{+0.45}_{-0.30} (95% confidence), similar to some of the lowest metallicity galaxies identified in the local universe. We find that our galaxies are all undergoing significant star formation with average specific star formation rate (SFR) of (100 Myr)^{-1}, and that they have high central SFR surface densities (average of 0.5 Msun/yr/kpc^2. In addition, more than two-thirds of our galaxies have between one and four nearby companions within a projected radius of 100 kpc, which we find is an excess among star-forming galaxies at z=0.4-0.85. We also find that the gas-phase metallicities for a given stellar mass and SFR lie systematically below the local M-Z-(SFR) relation by \approx0.2 dex (2\sigma\ significance). These results are partly due to selection effects, since galaxies with strong star formation and low metallicity are more likely to yield [OIII]4363 detections. Finally, the observed higher ionization parameter and electron density suggest that they are lower redshift analogs to typical z>1 galaxies.Comment: Accepted for publication in the Astrophysical Journal (15 November 2013). 31 pages in emulateapj format with 16 figures and 7 tables. Revised to address referee's comments, which include discussion on selection effects, similarities to green pea galaxies, and nebular continuum contribution. Modifications were made for some electron temperature and metallicity measurement

    Low-Frequency Vibrational Spectra of Chlorophylls a and b in Solution: Effects ofAxial Coordination

    Get PDF
    The far-infrared spectra (500--100 cm-I) of chlorophyll a were observed in three solvent systems (benzene-pyridine, benzene-tetrahydrofuran, and benzene-acetone). The observed spectra could be classified into three types corresponding to the aggregate state, the five-coordinate monomeric state, and the six-coordinate state. The far-infrared spectra of I5N_and 26lV[g-substitutedspecies and the polarized resonance Raman spectra of chlorophyll a and pheophytin a in the region of 500~100 cm-I were studied. These experimental results indicate that bands characteristic of the three states are due to modes to which deformations of the macrocycle make major contributions and vibrations around the Mg atom make some contributions, and that no band observed in the far- -infrared and Raman spectra is attributable to a vibrational mode associated predominantly with the Mg atom and the coordinating atoms. The spectral behavior of chlorophyll b in the benzene-pyridine system was similar to that of chlorophyll a
    corecore