217 research outputs found
Recommended from our members
Comparison of herbarium label data and published medicinal use: herbaria as an underutilized source of ethnobotanical information
The use of herbarium specimens as vouchers to support ethnobotanical surveys is well established. However,
herbaria may be underutilized resources for ethnobotanical research that depends on the analysis of large datasets compiled across multiple sites. Here, we compare two medicinal use datasets, one sourced from
published papers and the other from online herbaria to determine whether herbarium and published data
are comparable and to what extent herbarium specimens add new data and fill gaps in our knowledge of
geographical extent of plant use. Using Brazilian legumes as a case study, we compiled 1400 use reports from
105 publications and 15 Brazilian herbaria. Of the 319 species in 107 genera with cited medicinal uses, 165
(51%) were recorded only in the literature and 55 (17%) only on herbarium labels. Mode of application,
plant part used, or therapeutic use was less often documented by herbarium specimen labels (17% with
information) than publications (70%). However, medicinal use of 21 of the 128 species known from only
one report in the literature was substantiated from independently collected herbarium specimens, and 58
new therapeutic applications, 25 new plant parts, and 16 new modes of application were added for species
known from the literature. Thus, when literature reports are few or information-poor, herbarium data can
both validate and augment these reports. Herbarium data can also provide insights into the history and
geographical extent of use that are not captured in publications
Inhibition of the CXCL12/CXCR4-axis as preventive therapy for radiation-induced pulmonary fibrosis
Background: A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process. Methodology/Principal Findings: The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process. Conclusions/Significance: CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung injury, presenting future therapeutic opportunities for patients requiring chest irradiation. © 2013 Shu et al
A Horizon Scan of Neurotechnology Innovations
\ua9 2025 by the authors.Neurotechnology is a rapidly emerging field with vast potential within healthcare, but also has inherent concerns. There is, therefore, a need to ensure the responsible and ethical development and regulation of these technologies. This horizon scan aimed to provide an overview of neurotechnologies in development and those approved by the FDA as of June 2024 for a range of conditions relating to mental health, healthy ageing, and physical disability. Searches of clinical trials, conferences, journals, and news were performed in March 2024. Relevant technologies were identified through a process of screening, data extraction and synthesis. A total of 81 unique neurotechnologies were identified, with 23 relating to mental health, 31 to healthy ageing, and 42 to physical disability. A total of 79% percent did not yet have FDA approval and 77.4% were at earlier stages of development (pilot/feasibility studies), with 22.6% at pivotal or post-market stages. Digital elements were common features of the technologies, including software, apps, and connectivity to other devices; however, there were only three technologies with an identifiable AI component. A complex regulatory landscape and unique ethical and safety concerns associated with neurotechnology could pose challenges to innovators, though the emerging nature of the field also provides an opportunity to pre-emptively address potential issues
miR-199a-5p Is Upregulated during Fibrogenic Response to Tissue Injury and Mediates TGFbeta-Induced Lung Fibroblast Activation by Targeting Caveolin-1
As miRNAs are associated with normal cellular processes, deregulation of miRNAs is thought to play a causative role in many complex diseases. Nevertheless, the precise contribution of miRNAs in fibrotic lung diseases, especially the idiopathic form (IPF), remains poorly understood. Given the poor response rate of IPF patients to current therapy, new insights into the pathogenic mechanisms controlling lung fibroblasts activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies for this devastating disease. To identify miRNAs with potential roles in lung fibrogenesis, we performed a genome-wide assessment of miRNA expression in lungs from two different mouse strains known for their distinct susceptibility to develop lung fibrosis after bleomycin exposure. This led to the identification of miR-199a-5p as the best miRNA candidate associated with bleomycin response. Importantly, miR-199a-5p pulmonary expression was also significantly increased in IPF patients (94 IPF versus 83 controls). In particular, levels of miR-199a-5p were selectively increased in myofibroblasts from injured mouse lungs and fibroblastic foci, a histologic feature associated with IPF. Therefore, miR-199a-5p profibrotic effects were further investigated in cultured lung fibroblasts: miR-199a-5p expression was induced upon TGFβ exposure, and ectopic expression of miR-199a-5p was sufficient to promote the pathogenic activation of pulmonary fibroblasts including proliferation, migration, invasion, and differentiation into myofibroblasts. In addition, we demonstrated that miR-199a-5p is a key effector of TGFβ signaling in lung fibroblasts by regulating CAV1, a critical mediator of pulmonary fibrosis. Remarkably, aberrant expression of miR-199a-5p was also found in unilateral ureteral obstruction mouse model of kidney fibrosis, as well as in both bile duct ligation and CCl4-induced mouse models of liver fibrosis, suggesting that dysregulation of miR-199a-5p represents a general mechanism contributing to the fibrotic process. MiR-199a-5p thus behaves as a major regulator of tissue fibrosis with therapeutic potency to treat fibroproliferative diseases. © 2013 Lino Cardenas et al
'Mutations in LAMB2 associate with albuminuria and Optic Nerve Hypoplasia with Hypopituitarism'
CONTEXT: Mutations in LAMB2, encoding the basement membrane protein, laminin β2, are associated with an autosomal recessive disorder characterized by congenital nephrotic syndrome, ocular abnormalities and neurodevelopmental delay (Pierson Syndrome). CASE DESCRIPTION: This report describes a twelve year old boy with short stature, visual impairment and developmental delay who presented with macroscopic haematuria and albuminuria. He had isolated growth hormone deficiency, optic nerve hypoplasia and a small anterior pituitary with corpus callosum dysgenesis on his cranial MRI, thereby supporting a diagnosis of optic nerve hypoplasia syndrome. Renal histopathology revealed focal segmental glomerulosclerosis. Using next generation sequencing on a targeted gene panel for steroid resistant nephrotic syndrome, compound heterozygous missense mutations were identified in LAMB2 [c.737G>A p.Arg246Gln, c.3982G>C p.Gly1328Arg]. Immunohistochemical analysis revealed reduced glomerular laminin β2 expression compared to control kidney and a thin basement membrane on electron microscopy. Laminin β2 is expressed during pituitary development and Lamb2-/- mice exhibit stunted growth, abnormal neural retinae and here, we show, abnormal parenchyma of the anterior pituitary gland. CONCLUSION: We propose that patients with genetically undefined optic nerve hypoplasia syndrome should be screened for albuminuria and if present, screened for mutations in LAMB2
Static and dynamic mechanics of the murine lung after intratracheal bleomycin
<p>Abstract</p> <p>Background</p> <p>Despite its widespread use in pulmonary fibrosis research, the bleomycin mouse model has not been thoroughly validated from a pulmonary functional standpoint using new technologies. Purpose of this study was to systematically assess the functional alterations induced in murine lungs by fibrogenic agent bleomycin and to compare the forced oscillation technique with quasi-static pressure-volume curves in mice following bleomycin exposure.</p> <p>Methods</p> <p>Single intratracheal injections of saline (50 μL) or bleomycin (2 mg/Kg in 50 μL saline) were administered to C57BL/6 (<it>n </it>= 40) and Balb/c (<it>n </it>= 32) mice. Injury/fibrosis score, tissue volume density (TVD), collagen content, airway resistance (<it>R<sub>N</sub></it>), tissue damping (<it>G</it>) and elastance coefficient (<it>H</it>), hysteresivity (<it>η</it>), and area of pressure-volume curve (PV-A) were determined after 7 and 21 days (inflammation and fibrosis stage, respectively). Statistical hypothesis testing was performed using one-way ANOVA with LSD <it>post hoc </it>tests.</p> <p>Results</p> <p>Both C57BL/6 and Balb/c mice developed weight loss and lung inflammation after bleomycin. However, only C57BL/6 mice displayed cachexia and fibrosis, evidenced by increased fibrosis score, TVD, and collagen. At day 7, PV-A increased significantly and <it>G </it>and <it>H </it>non-significantly in bleomycin-exposed C57BL/6 mice compared to saline controls and further increase in all parameters was documented at day 21. <it>G </it>and <it>H</it>, but not PV-A, correlated well with the presence of fibrosis based on histology, TVD and collagen. In Balb/c mice, no change in collagen content, histology score, TVD, <it>H </it>and <it>G </it>was noted following bleomycin exposure, yet PV-A increased significantly compared to saline controls.</p> <p>Conclusions</p> <p>Lung dysfunction in the bleomycin model is more pronounced during the fibrosis stage rather than the inflammation stage. Forced oscillation mechanics are accurate indicators of experimental bleomycin-induced lung fibrosis. Quasi-static PV-curves may be more sensitive than forced oscillations at detecting inflammation and fibrosis.</p
SYNTHESYS+ Virtual Access - Report on the Ideas Call (October to November 2019)
The SYNTHESYS consortium has been operational since 2004, and has facilitated physical access by individual researchers to European natural history collections through its Transnational Access programme (TA). For the first time, SYNTHESYS+ will be offering virtual access to collections through digitisation, with two calls for the programme, the first in 2020 and the second in 2021. The Virtual Access (VA) programme is not a direct digital parallel of Transnational Access - proposals for collections digitisation will be prioritised and carried out based on community demand, and data must be made openly available immediately. A key feature of Virtual Access is that, unlike TA, it does not select the researchers to whom access is provided. Because Virtual Access in this way is new to the community and to the collections-holding institutions, the SYNTHESYS+ consortium invited ideas through an Ideas Call, that opened on 7th October 2019 and closed on 22nd November 2019, in order to assess interest and to trial procedures. This report is intended to provide feedback to those who participated in the Ideas Call and to help all applicants to the first SYNTHESYS+Virtual Access Call that will be launched on 20th of February 2020.This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published pdf
People are essential to linking biodiversity data
People are one of the best known and most stable entities in the biodiversity knowledge graph. The wealth of public information associated with people and the ability to identify them uniquely open up the possibility to make more use of these data in biodiversity science. Person data are almost always associated with entities such as specimens, molecular sequences, taxonomic names, observations, images, traits and publications. For example, the digitization and the aggregation of specimen data from museums and herbaria allow us to view a scientist’s specimen collecting in conjunction with the whole corpus of their works. However, the metadata of these entities are also useful in validating data, integrating data across collections and institutional databases and can be the basis of future research into biodiversity and science. In addition, the ability to reliably credit collectors for their work has the potential to change the incentive structure to promote improved curation and maintenance of natural history collections
Advances in Legume Systematics 14. Classification of Caesalpinioideae. Part 2: Higher-level classification
Caesalpinioideae is the second largest subfamily of legumes (Leguminosae) with ca. 4680 species and 163 genera. It is an ecologically and economically important group formed of mostly woody perennials that range from large canopy emergent trees to functionally herbaceous geoxyles, lianas and shrubs, and which has a global distribution, occurring on every continent except Antarctica. Following the recent re-circumscription of 15 Caesalpinioideae genera as presented in Advances in Legume Systematics 14, Part 1, and using as a basis a phylogenomic analysis of 997 nuclear gene sequences for 420 species and all but five of the genera currently recognised in the subfamily, we present a new higher-level classification for the subfamily. The new classification of Caesalpinioideae comprises eleven tribes, all of which are either new, reinstated or re-circumscribed at this rank: Caesalpinieae Rchb. (27 genera / ca. 223 species), Campsiandreae LPWG (2 / 5–22), Cassieae Bronn (7 / 695), Ceratonieae Rchb. (4 / 6), Dimorphandreae Benth. (4 / 35), Erythrophleeae LPWG (2 /13), Gleditsieae Nakai (3 / 20), Mimoseae Bronn (100 / ca. 3510), Pterogyneae LPWG (1 / 1), Schizolobieae Nakai (8 / 42–43), Sclerolobieae Benth. & Hook. f. (5 / ca. 113). Although many of these lineages have been recognised and named in the past, either as tribes or informal generic groups, their circumscriptions have varied widely and changed over the past decades, such that all the tribes described here differ in generic membership from those previously recognised. Importantly, the approximately 3500 species and 100 genera of the former subfamily Mimosoideae are now placed in the reinstated, but newly circumscribed, tribe Mimoseae. Because of the large size and ecological importance of the tribe, we also provide a clade-based classification system for Mimoseae that includes 17 named lower-level clades. Fourteen of the 100 Mimoseae genera remain unplaced in these lower-level clades: eight are resolved in two grades and six are phylogenetically isolated monogeneric lineages. In addition to the new classification, we provide a key to genera, morphological descriptions and notes for all 163 genera, all tribes, and all named clades. The diversity of growth forms, foliage, flowers and fruits are illustrated for all genera, and for each genus we also provide a distribution map, based on quality-controlled herbarium specimen localities. A glossary for specialised terms used in legume morphology is provided. This new phylogenetically based classification of Caesalpinioideae provides a solid system for communication and a framework for downstream analyses of biogeography, trait evolution and diversification, as well as for taxonomic revision of still understudied genera
- …
