1,889 research outputs found

    Flight simulators. Part 1: Present situation and trends. Part 2: Implications for training

    Get PDF
    The present situation and developments in the technology of flight simulators based on digital computers are evaluated from the standpoint of training airline flight crews. Areas covered are minicomputers and their advantages in terms of cost, space and time savings, software data packets, motion simulation, visual simulation and instructor aids. The division of training time between aircraft and simulator training and the possible advantages from increased use of simulators are evaluated

    On the dependability and feasibility of layperson ratings of divergent thinking

    Get PDF
    A new system for subjective rating of responses to divergent thinking tasks was tested using raters recruited from Amazon Mechanical Turk. The rationale for the study was to determine if such raters could provide reliable (aka generalizable) ratings from the perspective of generalizability theory. To promote reliability across the Alternative Uses and Consequence task prompts often used by researchers as measures of Divergent Thinking, two parallel scales were developed to facilitate feasibility and validity of ratings performed by laypeople. Generalizability and dependability studies were conducted separately for two scoring systems: the average-rating system and the snapshot system. Results showed that it is difficult to achieve adequate reliability using the snapshot system, while good reliability can be achieved on both task families using the average-rating system and a specific number of items and raters. Additionally, the construct validity of the average-rating system is generally good, with less validity for certain Consequences items. Recommendations for researchers wishing to adopt the new scales are discussed, along with broader issues of generalizability of subjective creativity ratings. © 2018 Hass, Rivera and Silvia

    The Gravity of Mystical Ascent

    Get PDF
    This article explores the way shifting notions of gravity within the development of Western imagination and thinking challenge both the above/below dichotomy and the spiritual/physical dualism that so often attend them. In moving from ancient conceptions of gravity and gravitas, particularly as informed by Aristotle, to modern conceptions based on scientific development since Galileo, Bacon, Newton, and Pascal, the article shows how gravity has always operated with a certain paradox of movement: inherent in moving down or up is its opposite. This paradox, influencing equally our physical and spiritual understandings of reality, becomes a mystical movement, as exemplified by Bonaventure’s 13th-century The Journey of the Mind to God. But as 20th-century writers as diverse as Hannah Arendt and Maurice Blanchot tell us, this mysticism does not necessarily diminish as modernity advances and can be invoked even in the modern scientific advancements, and disorientations, of space exploration

    Proof of the Double Bubble Conjecture in R^n

    Get PDF
    The least-area hypersurface enclosing and separating two given volumes in R^n is the standard double bubble.Comment: 20 pages, 22 figure

    Absence of low-temperature dependence of the decay of 7Be and 198Au in metallic hosts

    Full text link
    The electron-capture (EC) decay rate of 7Be in metallic Cu host and the beta-decay rate of 198Au in the host alloy Al-Au have been measured simultaneously at several temperatures, ranging from 0.350 K to 293 K. No difference of the half-life of 198Au between 12.5 K and 293 K is observed to a precision of 0.1%. By utilizing the special characteristics of our double-source assembly, possible geometrical effects that influence the individual rates could be eliminated. The ratio of 7Be to 198Au activity thus obtained also remains constant for this temperatures range to the experimental precision of 0.15(0.16)%. The resulting null temperature dependence is discussed in terms of the inadequacy of the often-used Debye-Huckel model for such measurements.Comment: Four pages, three figures. Accepted for publication in Phys. Rev. C (Rapd Communications

    Few layer graphene on SiC, pyrolitic graphite and graphene: a Raman scattering study

    Full text link
    The results of micro-Raman scattering measurements performed on three different ``graphitic'' materials: micro-structured disks of highly oriented pyrolytic graphite, graphene multi-layers thermally decomposed from carbon terminated surface of 4H-SiC and an exfoliated graphene monolayer are presented. Despite its multi-layer character, most parts of the surface of the graphitized SiC substrates shows a single-component, Lorentzian shape, double resonance Raman feature in striking similarity to the case of a single graphene monolayer. Our observation suggests a very weak electronic coupling between graphitic layers on the SiC surface, which therefore can be considered to be graphene multi-layers with a simple (Dirac-like) band structure.Comment: 4 pages, 3 Figures Structure of the paper strongly modified, small changes in Fig 2 and 3. Same interpretation and same result

    Creativity assessment in psychological research: (Re)setting the standards

    Get PDF
    This commentary discusses common relevant themes that have been highlighted across contributions in this special issue on \u27Creativity Assessment: Pitfalls, Solutions, and Standards.\u27 We first highlight the challenges of operationalizing creativity through the use of a range of measurement approaches that are simply not tapping into the same aspect of creativity. We then discuss pitfalls and challenges of the three most popular measurement methods employed in the field, namely divergent thinking tasks, product-based assessment using the consensual assessment techniques, and self-report methodology. Finally, we point to two imperative standards that emerged across contributions in this collection of articles, namely transparency (need to accurately define, operationalize, and report on the specific aspect[s] of creativity studied) and homogenization of creativity assessment (identification and consistent use of an optimal \u27standard\u27 measure for each major aspect of creativity). We conclude by providing directions on how the creativity research community and the field can meet these standards

    Radiation tolerant back biased CMOS VLSI

    Get PDF
    A CMOS circuit formed in a semiconductor substrate having improved immunity to total ionizing dose radiation, improved immunity to radiation induced latch up, and improved immunity to a single event upset. The architecture of the present invention can be utilized with the n-well, p-well, or dual-well processes. For example, a preferred embodiment of the present invention is described relative to a p-well process wherein the p-well is formed in an n-type substrate. A network of NMOS transistors is formed in the p-well, and a network of PMOS transistors is formed in the n-type substrate. A contact is electrically coupled to the p-well region and is coupled to first means for independently controlling the voltage in the p-well region. Another contact is electrically coupled to the n-type substrate and is coupled to second means for independently controlling the voltage in the n-type substrate. By controlling the p-well voltage, the effective threshold voltages of the n-channel transistors both drawn and parasitic can be dynamically tuned. Likewise, by controlling the n-type substrate, the effective threshold voltages of the p-channel transistors both drawn and parasitic can also be dynamically tuned. Preferably, by optimizing the threshold voltages of the n-channel and p-channel transistors, the total ionizing dose radiation effect will be neutralized and lower supply voltages can be utilized for the circuit which would result in the circuit requiring less power

    The Computational Complexity of Knot and Link Problems

    Full text link
    We consider the problem of deciding whether a polygonal knot in 3-dimensional Euclidean space is unknotted, capable of being continuously deformed without self-intersection so that it lies in a plane. We show that this problem, {\sc unknotting problem} is in {\bf NP}. We also consider the problem, {\sc unknotting problem} of determining whether two or more such polygons can be split, or continuously deformed without self-intersection so that they occupy both sides of a plane without intersecting it. We show that it also is in NP. Finally, we show that the problem of determining the genus of a polygonal knot (a generalization of the problem of determining whether it is unknotted) is in {\bf PSPACE}. We also give exponential worst-case running time bounds for deterministic algorithms to solve each of these problems. These algorithms are based on the use of normal surfaces and decision procedures due to W. Haken, with recent extensions by W. Jaco and J. L. Tollefson.Comment: 32 pages, 1 figur

    Apparatus for and method of eliminating single event upsets in combinational logic

    Get PDF
    An apparatus for and method of eliminating single event upsets (or SEU) in combinational logic are used to prevent error propagation as a result of cosmic particle strikes to the combinational logic. The apparatus preferably includes a combinational logic block electrically coupled to a delay element, a latch and an output buffer. In operation, a signal from the combinational logic is electrically coupled to a first input of the latch. In addition, the signal is routed through the delay element to produce a delayed signal. The delayed signal is routed to a second input of the latch. The latch used in the apparatus for preventing SEU preferably includes latch outputs and a feature that the latch outputs will not change state unless both latch inputs are correct. For example, the latch outputs may not change state unless both latch inputs have the same logical state. When a cosmic particle strikes the combinational logic, a transient disturbance with a predetermined length may appear in the signal. However, a function of the delay element is to preferably provide a time delay greater than the length of the transient disturbance. Therefore, the transient disturbance will not reach both latch inputs simultaneously. As a result, the latch outputs will not permanently change state in error due to the transient disturbance. In addition, the output buffer preferably combines the latch outputs in such a way that the correct state is preserved at all times. Thus, combinational logic with protection from SEU is provided
    • …
    corecore