60 research outputs found

    Retrievals of atmospheric CO_2 from simulated space-borne measurements of backscattered near-infrared sunlight: accounting for aerosol effects

    Get PDF
    Retrievals of atmospheric carbon dioxide (CO_2) from space-borne measurements of backscattered near-infrared sunlight are hampered by aerosol and cirrus cloud scattering effects. We propose a retrieval approach that allows for the retrieval of a few effective aerosol parameters simultaneously with the CO_2 total column by parameterizing particle amount, height distribution, and microphysical properties. Two implementations of the proposed method covering different spectral bands are tested for an ensemble of simulated nadir observations for aerosol (and cirrus) loaded scenes over low- and mid-latitudinal land surfaces. The residual aerosol-induced CO_2 errors are mostly below 1% up to aerosol optical thickness 0.5. The proposed methods also perform convincing for scenes where cirrus clouds of optical thickness 0.1 overlay the aerosol

    Assimilation of POLDER observations to estimate aerosol emissions

    Get PDF
    We apply a local ensemble transform Kalman smoother (LETKS) in combination with the global aerosol–climate model ECHAM–HAM to estimate aerosol emissions from POLDER-3/PARASOL (POLarization and Directionality of the Earth's Reflectances) observations for the year 2006. We assimilate aerosol optical depth at 550 mnm (AOD550), the Ångström exponent at 550 and 865 nm (AE550–865), and single-scattering albedo at 550 nm (SSA550) in order to improve modeled aerosol mass, size and absorption simultaneously. The new global aerosol emissions increase to 1419 Tg yr−1 (+28 %) for dust, 1850 Tg yr−1 (+75 %) for sea salt, 215 Tg yr−1 (+143 %) for organic aerosol and 13.3 Tg yr−1 (+75 %) for black carbon, while the sulfur dioxide emissions increase to 198 Tg yr−1 (+42 %) and the total deposition of sulfates to 293 Tg yr−1 (+39 %). Organic and black carbon emissions are much higher than their prior values from bottom-up inventories, with a stronger increase in biomass burning sources (+193 % and +90 %) than in anthropogenic sources (115 % and 70 %). The evaluation of the experiments with POLDER (assimilated) and AERONET as well as MODIS Dark Target (independent) observations shows a clear improvement compared with the ECHAM–HAM control run. Specifically based on AERONET, the global mean error in AOD550 improves from −0.094 to −0.006, while absorption aerosol optical depth at 550 nm (AAOD550) improves from −0.009 to −0.004 after the assimilation. A smaller improvement is also observed in the AE550–865 mean absolute error (from 0.428 to 0.393), with a considerably higher improvement over isolated island sites at the ocean. The new dust emissions are closer to the ensemble median of AEROCOM I, AEROCOM III and CMIP5 as well as some of the previous assimilation studies. The new sea salt emissions have become closer to the reported emissions from previous studies. Indications of a missing fraction of coarse dust and sea salt particles are discussed. The biomass burning changes (based on POLDER) can be used as alternative biomass burning scaling factors for the Global Fire Assimilation System (GFAS) inventory distinctively estimated for organic carbon (2.93) and black carbon (1.90) instead of the recommended scaling of 3.4 (Kaiser et al., 2012). The estimated emissions are highly sensitive to the relative humidity due to aerosol water uptake, especially in the case of sulfates. We found that ECHAM–HAM, like most of the global climate models (GCMs) that participated in AEROCOM and CMIP6, overestimated the relative humidity compared with ERA5 and as a result the water uptake by aerosols, assuming the kappa values are not underestimated. If we use the ERA5 relative humidity, sulfate emissions must be further increased, as modeled sulfate AOD is lowered. Specifically, over East Asia, the lower AOD can be attributed to the underestimated precipitation and the lack of simulated nitrates in the model.</p

    Retrieval of Liquid Water Cloud Properties from POLDER-3 Measurements Using a Neural Network Ensemble Approach

    Get PDF
    This paper describes a neural network algorithm for the estimation of liquid water cloud optical properties from the Polarization and Directionality of Earth's Reflectances-3 (POLDER-3) instrument aboard the Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) satellite. The algorithm has been trained on synthetic multi-angle, multi-wavelength measurements of reflectance and polarization and has been applied to the processing of 1 year of POLDER-3 data. Comparisons of the retrieved cloud properties with Moderate Resolution Imaging Spectroradiometer (MODIS) products show that the neural network algorithm has a low bias of around 2 in cloud optical thickness (COT) and between 1 and 2m in the cloud effective radius. Comparisons with existing POLDER-3 datasets suggest that the proposed scheme may have enhanced capabilities for cloud effective radius retrieval, at least over land. An additional feature of the presented algorithm is that it provides COT and effective radius retrievals at the native POLDER-3 Level 1B pixel level

    Aerosol Retrievals from Different Polarimeters During the ACEPOL Campaign Using a Common Retrieval Algorithm

    Get PDF
    In this paper, we present aerosol retrieval results from the ACEPOL (Aerosol Characterization from Polarimeter and Lidar) campaign, which was a joint initiative between NASA and SRON the Netherlands Institute for Space Research. The campaign took place in OctoberNovember 2017 over the western part of the United States. During ACEPOL six different instruments were deployed on the NASA ER-2 high-altitude aircraft, including four multi-angle polarimeters (MAPs): SPEX airborne, the Airborne Hyper Angular Rainbow Polarimeter (AirHARP), the Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI), and the Research Scanning Polarimeter (RSP). Also, two lidars participated: the High Spectral Resolution Lidar-2 (HSRL-2) and the Cloud Physics Lidar (CPL). Flights were conducted mainly for scenes with low aerosol load over land, but some cases with higher AOD were also observed. We perform aerosol retrievals from SPEX airborne, RSP (410865 nm range only), and AirMSPI using the SRON aerosol retrieval algorithm and compare the results against AERONET (AErosol RObotic NETwork) and HSRL-2 measurements (for SPEX airborne and RSP). All three MAPs compare well against AERONET for the aerosol optical depth (AOD), with a mean absolute error (MAE) between 0.014 and 0.024 at 440 nm. For the fine-mode effective radius the MAE ranges between 0.021 and 0.028 m. For the comparison with HSRL-2 we focus on a day with low AOD (0.020.14 at 532 nm) over the California Central Valley, Arizona, and Nevada (26 October) as well as a flight with high AOD (including measurements with AOD>1.0 at 532 nm) over a prescribed forest fire in Arizona (9 November). For the day with low AOD the MAEs in AOD (at 532 nm) with HSRL-2 are 0.014 and 0.022 for SPEX and RSP, respectively, showing the capability of MAPs to provide accurate AOD retrievals for the challenging case of low AOD over land. For the retrievals over the smoke plume a reasonable agreement in AOD between the MAPs and HSRL-2 was also found (MAE 0.088 and 0.079 for SPEX and RSP, respectively), despite the fact that the comparison is hampered by large spatial variability in AOD throughout the smoke plume. A good comparison is also found between the MAPs and HSRL-2 for the aerosol depolarization ratio (a measure of particle sphericity), with an MAE of 0.023 and 0.016 for SPEX and RSP, respectively. Finally, SPEX and RSP agree very well for the retrieved microphysical and optical properties of the smoke plume

    Inverse modeling of CH4 emissions for 2010 - 2011 using different satellite retrieval products from GOSAT and SCIAMACHY

    Get PDF
    Beginning in 2009 new space-borne observations of dry-air column-averaged mole fractions of atmospheric methane (XCH4) became available from the Thermal And Near infrared Sensor for carbon Observations - Fourier Transform Spectrometer (TANSO-FTS) instrument onboard the Greenhouse Gases Observing SATellite (GOSAT). Until April 2012 concurrent CH4 measurements were provided by the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) instrument onboard ENVISAT. The GOSAT and SCIAMACHY XCH4 retrievals can be directly compared during their circa 32-month period of overlap. We estimate monthly average CH4 emissions between January 2010 and December 2011, using the TM5-4DVAR inverse modeling system. Additionally, high-accuracy measurements from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA ESRL) global air sampling network are used, providing strong constraints of the remote surface atmosphere. We discuss five inversion scenarios that make use of different GOSAT and SCIAMACHY XCH4 retrieval products, including two sets of GOSAT proxy retrievals processed independently by the Netherlands Institute for Space Research (SRON) / Karlsruhe Institute of Technology (KIT), and the University of Leicester (UL), and the RemoTeC "Full-Physics" (FP) XCH4 retrievals available from SRON/KIT. 2-year average emission maps show a good overall agreement among all GOSAT-based inversions, but also compared to the SCIAMACHY-based inversion, with consistent flux adjustment patterns, particularly across Equatorial Africa and North America. The inversions are validated against independent shipboard and aircraft observations, and XCH4 measurements available from the Total Carbon Column Observing Network (TCCON). All GOSAT and SCIAMACHY inversions show very similar validation performance.JRC.H.2-Air and Climat

    Classification of Aerosol Retrievals from Spaceborne Polarimetry Using a Multiparameter Algorithm

    Get PDF
    In this presentation, we demonstrate application of a new aerosol classification algorithm to retrievals from the POLDER-3 polarimter on the PARASOL spacecraft. Motivation and method: Since the development of global aerosol measurements by satellites and AERONET, classification of observed aerosols into several types (e.g., urban-industrial, biomass burning, mineral dust, maritime, and various subtypes or mixtures of these) has proven useful to: understanding aerosol sources, transformations, effects, and feedback mechanisms; improving accuracy of satellite retrievals and quantifying assessments of aerosol radiative impacts on climate
    • …
    corecore