161 research outputs found

    Silicon Microleaks for Inlets of Mass Spectrometers

    Get PDF
    Microleaks for inlets of mass spectrometers used to analyze atmospheric gases can be fabricated in silicon wafers by means of photolithography, etching, and other techniques that are commonly used in the manufacture of integrated circuits and microelectromechanical systems. The microleaks serve to limit the flows of the gases into the mass-spectrometer vacuums to specified very small flow rates consistent with the capacities of the spectrometer vacuum pumps. There is a need to be able to precisely tailor the dimensions of each microleak so as to tailor its conductance to a precise low value. (As used here, "conductance" signifies the ratio between the rate of flow in the leak and the pressure drop from the upstream to the downstream end of the leak.) To date, microleaks have been made, variously, of crimped metal tubes, pulled glass tubes, or frits. Crimped-metal and pulled-glass-tube microleaks cannot readily be fabricated repeatably to precise dimensions and are susceptible to clogging with droplets or particles. Frits tend to be differentially chemically reactive with various gas constituents and, hence, to distort the gas mixtures to be analyzed. The present approach involving microfabrication in silicon largely overcomes the disadvantages of the prior approaches

    Systems, methods, and apparatus of a low conductance silicon micro-leak for mass spectrometer inlet

    Get PDF
    Systems, methods and apparatus are provided through which in some embodiments a mass spectrometer micro-leak includes a number of channels fabricated by semiconductor processing tools and that includes a number of inlet holes that provide access to the channels

    Systems, Methods, and Apparatus of a Low Conductance Silicon Micro-Leak for Mass Spectrometer Inlet

    Get PDF
    Systems, methods and apparatus are provided through which in some embodiments a mass spectrometer micro-leak includes a number of channels fabricated by semiconductor processing tools and that includes a number of inlet holes that provide access to the channels

    Laboratory Simulations of the Titan Surface to Elucidate the Huygens Probe GCMS Observations

    Get PDF
    The Cassini/Huygens mission has vastly increased the information we have available to stndy Satnro's moon Titan. The complete mission has included an array of observational methods including remote sensing techniques, upper atmosphere in-situ saropling, and the descent of the Huygens probe directly through the atmosphere to the surface [1,2]. The instruments on the Huygens probe remain the ouly source of in-situ measurements at the surface of Titan, and work evaluating these measurements to create a pict.rre of the surface environment is ongoing. In particular, the Gas Chromatograph Mass Spectrometer (GCMS) experiment on Huygens found that although there were no heavy hydrocarbons detected in the lower atmosphere, a rich spectrum of mass peaks arose once the probe landed on the surface [3,4], However, to date it has not been possible to extract the identity and abundances of the many minor components of the spectra due to a lack of temperatnre- and instrumentappropriate data for the relevant species. We are performing laboratory stndies designed to elucidate the spectrum collected on Titan's surface, utilizing a cryogenic charober maintained at appropriate temperature and pressure conditions. The experiments will simulate the temperatnre rise experienced by the surface, which led to an enhanced signal of volatiles detected by the Huygens GCMS. The objective of this study is to exaroine the characteristics of various surface analogs as measured by the Huygens GCMS flight spare instrument, which is currently housed in our laboratory at NASA Goddard Space Flight Center (GSFC). This identification cannot be adequately accomplished through theoretical work alone since the thermodynamic properties of many species at these temperatnres (94 K, HASI measurement [5]) are not known

    Calibration of the Quadrupole Mass Spectrometer of the Sample Analysis at Mars Instrument Suite

    Get PDF
    The SAM suite of instruments on the "Curiosity" Rover of the Mars Science Laboratory (MSL) is designed to provide chemical and isotopic analysis of organic and inorganic volatiles for both atmospheric and solid samples. The mission of the MSL investigations is to advance beyond the successful search for aqueous transformation in surface environments at Mars toward a quantitative assessment of habitability and preservation through a series of chemical and geological measurements. The SAM suite was delivered in December 2010 (Figure 1) to the Jet Propulsion Laboratory for integration into the Curiosity Rover. We previously outlined the range of SAM solid and gas calibrations implemented or planned and here we discuss a specific set of calibration experiments to establish the response of the SAM Quadrupole Mass Spectrometer (QMS) to the four most abundant gases in the Martian atmosphere CO2, N2, Ar, and O2, A full SAM instrument description and calibration report is presently in preparation

    Abundance and Isotopic Composition of Gases in the Martian Atmosphere: First Results from the Mars Curiosity Rover

    Get PDF
    Repeated measurements of the composition of the Mars atmosphere from Curiosity Rover yield a (40)Ar/N2 ratio 1.7 times greater and the (40)Ar/(36)Ar ratio 1.6 times smaller than the Viking Lander values in 1976. The unexpected change in (40)Ar/N2 ratio probably results from different instrument characteristics although we cannot yet rule out some unknown atmospheric process. The new (40)Ar/(36)Ar ratio is more aligned with Martian meteoritic values. Besides Ar and N2 the Sample Analysis at Mars instrument suite on the Curiosity Rover has measured the other principal components of the atmosphere and the isotopes. The resulting volume mixing ratios are: CO2 0.960(+/- 0.007); (40)Ar 0.0193(+/- 0.0001); N2 0.0189(+/- 0.0003); O2 1.45(+/- 0.09) x 10(exp -3); and CO 5.45(+/- 3.62) x 10(exp 4); and the isotopes (40)Ar/(36)Ar 1.9(+/- 0.3) x 10(exp 3), and delta (13)C and delta (18)O from CO2 that are both several tens of per mil more positive than the terrestrial averages. Heavy isotope enrichments support the hypothesis of large atmospheric loss. Moreover, the data are consistent with values measured in Martian meteorites, providing additional strong support for a Martian origin for these rocks

    Galileo Probe Mass Spectrometer experiment

    Full text link
    The Galileo Probe Mass Spectrometer (GPMS) is a Probe instrument designed to measure the chemical and isotopic composition including vertical variations of the constituents in the atmosphere of Jupiter. The measurement will be performed by in situ sampling of the ambient atmosphere in the pressure range from approximately 150 mbar to 20 bar. In addition batch sampling will be performed for noble gas composition measurement and isotopic ratio determination and for sensitivity enhancement of non-reactive trace gases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43775/1/11214_2004_Article_BF00216852.pd

    The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe

    Full text link
    Saturn's largest moon, Titan, remains an enigma, explored only by remote sensing from Earth, and by the Voyager and Cassini spacecraft. The most puzzling aspects include the origin of the molecular nitrogen and methane in its atmosphere, and the mechanism(s) by which methane is maintained in the face of rapid destruction by photolysis. The Huygens probe, launched from the Cassini spacecraft, has made the first direct observations of the satellite's surface and lower atmosphere. Here we report direct atmospheric measurements from the Gas Chromatograph Mass Spectrometer (GCMS), including altitude profiles of the constituents, isotopic ratios and trace species ( including organic compounds). The primary constituents were confirmed to be nitrogen and methane. Noble gases other than argon were not detected. The argon includes primordial Ar-36, and the radiogenic isotope Ar-40, providing an important constraint on the outgassing history of Titan. Trace organic species, including cyanogen and ethane, were found in surface measurements.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62703/1/nature04122.pd

    Curiosity's Sample Analysis at Mars (SAM) Investigation: Overview of Results from the First 120 Sols on Mars

    Get PDF
    During the first 120 sols of Curiosity s landed mission on Mars (8/6/2012 to 12/7/2012) SAM sampled the atmosphere 9 times and an eolian bedform named Rocknest 4 times. The atmospheric experiments utilized SAM s quadrupole mass spectrometer (QMS) and tunable laser spectrometer (TLS) while the solid sample experiments also utilized the gas chromatograph (GC). Although a number of core experiments were pre-programmed and stored in EEProm, a high level SAM scripting language enabled the team to optimize experiments based on prior runs

    The Sample Analysis at Mars Investigation and Instrument Suite

    Get PDF
    The Sample Analysis at Mars (SAM) investigation of the Mars Science Laboratory(MSL) addresses the chemical and isotopic composition of the atmosphere and volatilesextracted from solid samples. The SAM investigation is designed to contribute substantiallyto the mission goal of quantitatively assessing the habitability of Mars as an essentialstep in the search for past or present life on Mars. SAM is a 40 kg instrument suite locatedin the interior of MSLs Curiosity rover. The SAM instruments are a quadrupole massspectrometer, a tunable laser spectrometer, and a 6-column gas chromatograph all coupledthrough solid and gas processing systems to provide complementary information on thesame samples. The SAM suite is able to measure a suite of light isotopes and to analyzevolatiles directly from the atmosphere or thermally released from solid samples. In additionto measurements of simple inorganic compounds and noble gases SAM will conducta sensitive search for organic compounds with either thermal or chemical extraction fromsieved samples delivered by the sample processing system on the Curiosity rovers roboticarm
    • …
    corecore