159 research outputs found
Suppression of matching field effects by splay and pinning energy dispersion in YBa_2Cu_3O_7 with columnar defects
We report measurements of the irreversible magnetization M_i of a large
number of YBa_2Cu_3O_7 single crystals with columnar defects (CD). Some of them
exhibit a maximum in M_i when the density of vortices equals the density of
tracks, at temperatures above 40K. We show that the observation of these
matching field effects is constrained to those crystals where the orientational
and pinning energy dispersion of the CD system lies below a certain threshold.
The amount of such dispersion is determined by the mass and energy of the
irradiation ions, and by the crystal thickness. Time relaxation measurements
show that the matching effects are associated with a reduction of the creep
rate, and occur deep into the collective pinning regime.Comment: 7 pages, 5 figures, submitted to Phys. Rev.
Interactions, Distribution of Pinning Energies, and Transport in the Bose Glass Phase of Vortices in Superconductors
We study the ground state and low energy excitations of vortices pinned to
columnar defects in superconductors, taking into account the long--range
interaction between the fluxons. We consider the ``underfilled'' situation in
the Bose glass phase, where each flux line is attached to one of the defects,
while some pins remain unoccupied. By exploiting an analogy with disordered
semiconductors, we calculate the spatial configurations in the ground state, as
well as the distribution of pinning energies, using a zero--temperature Monte
Carlo algorithm minimizing the total energy with respect to all possible
one--vortex transfers. Intervortex repulsion leads to strong correlations
whenever the London penetration depth exceeds the fluxon spacing. A pronounced
peak appears in the static structure factor for low filling fractions . Interactions lead to a broad Coulomb gap in the distribution of
pinning energies near the chemical potential , separating
the occupied and empty pins. The vanishing of at leads to a
considerable reduction of variable--range hopping vortex transport by
correlated flux line pinning.Comment: 16 pages (twocolumn), revtex, 16 figures not appended, please contact
[email protected]
Pulsar kicks from a dark-matter sterile neutrino
We show that a sterile neutrino with mass in the 1-20 keV range and a small
mixing with the electron neutrino can simultaneously explain the origin of the
pulsar motions and the dark matter in the universe. An asymmetric neutrino
emission from a hot nascent neutron star can be the explanation of the observed
pulsar velocities. In addition to the pulsar kick mechanism based on resonant
neutrino transitions, we point out a new possibility: an asymmetric
off-resonant emission of sterile neutrinos. The two cases correspond to
different values of the masses and mixing angles. In both cases we identify the
ranges of parameters consistent with the pulsar kick, as well as cosmological
constraints.Comment: 5 pages, 2 figures; final version; discussion and references adde
Recommended from our members
Energetic particle influence on the Earth's atmosphere
This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally
galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere
are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth’s atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere
A creative destruction approach to replication: Implicit work and sex morality across cultures
A creative destruction approach to replication: Implicit work and sex morality across cultures
Error sources and data limitations for the prediction ofsurface gravity: a case study using benchmarks
Gravity-based heights require gravity values at levelled benchmarks (BMs), whichsometimes have to be predicted from surrounding observations. We use EGM2008 andthe Australian National Gravity Database (ANGD) as examples of model and terrestrialobserved data respectively to predict gravity at Australian national levelling network(ANLN) BMs. The aim is to quantify errors that may propagate into the predicted BMgravity values and then into gravimetric height corrections (HCs). Our results indicatethat an approximate ±1 arc-minute horizontal position error of the BMs causesmaximum errors in EGM2008 BM gravity of ~ 22 mGal (~55 mm in the HC at ~2200 melevation) and ~18 mGal for ANGD BM gravity because the values are not computed atthe true location of the BM. We use RTM (residual terrain modelling) techniques toshow that ~50% of EGM2008 BM gravity error in a moderately mountainous regioncan be accounted for by signal omission. Non-representative sampling of ANGDgravity in this region may cause errors of up to 50 mGals (~120 mm for the Helmertorthometric correction at ~2200 m elevation). For modelled gravity at BMs to beviable, levelling networks need horizontal BM positions accurate to a few metres, whileRTM techniques can be used to reduce signal omission error. Unrepresentative gravitysampling in mountains can be remedied by denser and more representative re-surveys,and/or gravity can be forward modelled into regions of sparser gravity
Variabilidade genética de Diadegma sp., parasitóide da traça-das-crucíferas, através de RAPD-PCR
New insights into the genetic etiology of Alzheimer's disease and related dementias.
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
- …
