74 research outputs found

    Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels

    Get PDF
    Fruit peels have a diverse range of phytochemicals including carotenoids, vitamins, dietary fibres, and phenolic compounds, some with remarkable antioxidant properties. Nevertheless, the comprehensive screening and characterization of the complex array of phenolic compounds in different fruit peels is limited. This study aimed to determine the polyphenol content and their antioxidant potential in twenty different fruit peel samples in an ethanolic extraction, including their comprehensive characterization and quantification using the LC-MS/MS and HPLC. The obtained results showed that the mango peel exhibited the highest phenolic content for TPC (27.51 ± 0.63 mg GAE/g) and TFC (1.75 ± 0.08 mg QE/g), while the TTC (9.01 ± 0.20 mg CE/g) was slightly higher in the avocado peel than mango peel (8.99 ± 0.13 mg CE/g). In terms of antioxidant potential, the grapefruit peel had the highest radical scavenging capacities for the DPPH (9.17 ± 0.19 mg AAE/g), ABTS (10.79 ± 0.56 mg AAE/g), ferric reducing capacity in FRAP (9.22 ± 0.25 mg AA/g), and total antioxidant capacity, TAC (8.77 ± 0.34 mg AAE/g) compared to other fruit peel samples. The application of LC-ESI-QTOF-MS/MS tentatively identified and characterized a total of 176 phenolics, including phenolic acids (49), flavonoids (86), lignans (11), stilbene (5) and other polyphenols (25) in all twenty peel samples. From HPLC-PDA quantification, the mango peel sample showed significantly higher phenolic content, particularly for phenolic acids (gallic acid, 14.5 ± 0.4 mg/g) and flavonoids (quercetin, 11.9 ± 0.4 mg/g), as compared to other fruit peel samples. These results highlight the importance of fruit peels as a potential source of polyphenols. This study provides supportive information for the utilization of different phenolic rich fruit peels as ingredients in food, feed, and nutraceutical products

    A Comparative Investigation on Phenolic Composition, Characterization and Antioxidant Potentials of Five Different Australian Grown Pear Varieties

    Get PDF
    Pear (Pyrus communis L.) is widely spread throughout the temperate regions of the world, such as China, America and Australia. This fruit is popular among consumers due to its excellent taste and perceived health benefits. Various bioactive compounds, which contribute to these health benefits, have been detected in the pear fruits, including a range of phenolic compounds. Five Australian grown pear varieties, which include Packham’s Triumph, Josephine de Malines, Beurre Bosc, Winter Nelis and Rico were selected for this study to examine the phenolic compounds in pears. Beurre Bosc exhibited the highest total polyphenol content (TPC) (3.14 ± 0.02 mg GAE/g), total tannin content (TTC) (1.43 ± 0.04 mg CE/g) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) (5.72 ± 0.11 mg AAE/g), while the Josephine de Malines variety was high in total flavonoid content (TFC) (1.53 ± 0.09 mg QE/g), ferric reducing antioxidant power (FRAP) (4.37 ± 0.04 mg AAE/g), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (4.44 ± 0.01 mg AAE/g) and total antioxidant capacity (TAC) (5.29 ± 0.09 mg AAE/g). The liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) data indicate that a total of 73 phenolic compounds were detected in Beurre Bosc (37 compounds), Josephine de Malines (34), Rico (22), Packham’s Triumph (15) and Winter Nelis (9), respectively. From HPLC-PDA quantification, the Beurre Bosc pear variety showed significantly higher in phenolic acids (chlorogenic acid; 17.58 ± 0.88 mg/g) and while flavonoids were significantly higher in Josephine de Malines (catechin; 17.45 ± 1.39 mg/g), as compared to other pear varieties. The analyses suggest that the Australian grown pears might contain an ideal source of phenolic compounds which benefit human health. The information provided by the present work can serve as practical supporting data for the use of pears in the nutraceutical, pharmaceutical and food industries

    A Dietary Sugarcane-Derived Polyphenol Mix Reduces the Negative Effects of Cyclic Heat Exposure on Growth Performance, Blood Gas Status, and Meat Quality in Broiler Chickens

    Get PDF
    Heat stress (HS) compromises growth performance and meat quality of broiler chickens by interrupting lipid and protein metabolism, resulting in increased oxidative damages. The experiment attempted to investigate whether dietary polyphenols (Polygain (POL)) could ameliorate the aforementioned adverse effects of HS on performance and meat quality. One hundred and twenty one day-old-male chicks were allocated to two temperature conditions, thermoneutral (TN) or HS, and fed with either a control diet (CON) or the CON plus four different doses of POL (2, 4, 6 and 10 g/kg). Heat stress caused respiratory alkalosis as evidenced by increased rectal temperature (p < 0.001) and respiration rate (p < 0.001) due to increased blood pH (p < 0.001). Heat stress decreased final body weight (p = 0.061) and breast muscle water content (p = 0.013) while POL improved both (p = 0.002 and p = 0.003, respectively). Heat stress amplified muscle damages, indicated by increased thiobarbituric acid reactive substances (p < 0.001) and reduced myofibril fragmentation index (p = 0.006) whereas POL improved both (p = 0.037 and p = 0.092, respectively). Heat stress impaired meat tenderness (p < 0.001) while POL improved it (p = 0.003). In conclusion, HS impaired growth performance and meat quality whereas POL ameliorated these responses in a dose-dependent manner, and effects of POL were evident under both temperature conditions

    High-Throughput Screening and Characterization of Phenolic Compounds in Stone Fruits Waste by LC-ESI-QTOF-MS/MS and Their Potential Antioxidant Activities

    Get PDF
    Stone fruits, including peach (Prunus persica L.), nectarine (Prunus nucipersica L.), plum (Prunus domestica L.) and apricot (Prunus armeniaca L.) are common commercial fruits in the market. However, a huge amount of stone fruits waste is produced throughout the food supply chain during picking, handling, processing, packaging, storage, transportation, retailing and final consumption. These stone fruits waste contain high phenolic content which are the main contributors to the antioxidant potential and associated health benefits. The antioxidant results showed that plum waste contained higher concentrations of total phenolic content (TPC) (0.94 ± 0.07 mg gallic acid equivalents (GAE)/g) and total flavonoid content (TFC) (0.34 ± 0.01 mg quercetin equivalents (QE)/g), while apricot waste contained a higher concentration of total tannin content (TTC) (0.19 ± 0.03 mg catechin equivalents (CE)/g) and DPPH activity (1.47 ± 0.12 mg ascorbic acid equivalents (AAE)/g). However, nectarine waste had higher antioxidant capacity in ferric reducing-antioxidant power (FRAP) (0.98 ± 0.02 mg AAE/g) and total antioxidant capacity (TAC) (0.91 ± 0.09 mg AAE/g) assays, while peach waste showed higher antioxidant capacity in 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay (0.43 ± 0.09 mg AAE/g) as compared to other stone fruits waste. Qualitative and quantitative phenolic analysis of Australian grown stone fruits waste were conducted by liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) and HPLC-photodiode array detection (PDA). The LC-ESI-QTOF-MS/MS result indicates that 59 phenolic compounds were tentatively characterized in peach (33 compounds), nectarine (28), plum (38) and apricot (23). The HPLC-PDA indicated that p-hydroxybenzoic acid (18.64 ± 1.30 mg/g) was detected to be the most dominant phenolic acid and quercetin (19.68 ± 1.38 mg/g) was the most significant flavonoid in stone fruits waste. Hence, it could be concluded that stone fruit waste contains various phenolic compounds and have antioxidant potential. The results could support the applications of these stone fruit wastes in other food, feed, nutraceutical and pharmaceutical industries

    Effects of postharvest processing on aroma formation in roasted coffee – a review

    Get PDF
    Postharvest processing of coffee cherries significantly influences sensory characteristics and commercial values. Aroma is one of the critical elements in product qualification and differentiation of coffees from different origins, roasting levels and brewing methods. Except for primary coffee volatile organic compounds (VOCs) (furans and pyrazines), which are generated during postharvest processing (dry, honey, wet processing and roasting), aldehydes, ketones, phenols, sulphur compounds and others could also contribute to the complex coffee flavour. Desirable flavour requires a balance between pleasant and defective VOCs. This review comprehensively discussed the mechanisms of conventional and novel postharvest processing of coffee beans, their impact on the sensorial profile of green and roasted coffee, and the composition, generation and analysis techniques of coffee VOCs. This review shows the feasibility of GC–MS and electronic nose (E-nose) in coffee VOCs and flavour detection, meanwhile building a comprehensive linkage between postharvest processing and coffee sensory characteristics

    Identification of phenolic compounds in Australian grown dragon fruits by LC-ESI-QTOF-MS/MS and determination of their antioxidant potential

    Get PDF
    Dragon fruit is a popular tropical fruit that has a high phenolic content which are the main contributors to the antioxidant potential and health benefits of dragon fruit pulp and peel waste. Although some phenolic compounds in dragon fruit have previously been reported, a comprehensive analysis of complete phenolic profile of the Australian varieties has not been conducted. Thus, the aim of this study was to extract, identify and quantify phenolics from dragon fruits grown in Australia. Phenolic compounds were extracted from the peels and pulps of white and red dragon fruit. Phenolic content was determined by total phenolic content (TPC), total flavonoid content (TFC) and total tannin content (TTC), while antioxidant activities were measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), 2,2′-Azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and total antioxidant capacity (TAC). The results showed that dragon fruit pulp had a higher total phenolic content and stronger antioxidant capacity than peel, while the peel had a higher content of flavonoids and tannins than the pulp. Liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) was used for the characterization of phenolic compounds, a total of 80 phenolics including phenolic acids (25), flavonoids (38), lignans (6), stilbene (3) and other polyphenols (8) were characterized in all dragon fruits. High performance liquid chromatography equipped with photodiode array detector (HPLC-PDA) quantified the phenolic compounds in different portion of dragon fruit and showed that dragon peel had higher concentrations of phenolics than pulp. The results highlighted that both dragon fruit peel and pulp are potential sources of phenolic compounds, with peel in particular being a source of antioxidant phenolics with potential as ingredients for the food and pharmaceutical industries

    Screening and Characterization of Phenolic Compounds from Australian Grown Bananas and Their Antioxidant Capacity

    Get PDF
    Bananas are an essential source of staple food and fruit worldwide and are widely regarded as the world’s largest fruit crop, with more than 100 million tons total annual production. Banana peel, a by-product that represents about 40% of the entire banana’s weight, and pulp are rich in bioactive compounds and have a high antioxidant capacity. As the production of polyphenols in fruit and vegetables is highly dependent on environmental conditions, genetic factors, and the level of maturity, this study aims to characterize six Australian banana cultivars in various stages of ripening for their phenolic compounds using the liquid chromatography-electrospray ionization quadrupole time of flight mass spectrometry (LC-ESI-QTOF-MS/MS), polyphenols quantification with the high-performance liquid chromatography coupled with photodiode array detector (HPLC-PDA), and their antioxidant capacity. All bananas were analysed for total polyphenols content (TPC), total flavonoids content (TFC), and total tannin content (TTC) and their antioxidant activities. Ripe Ducasse peel and pulp contained the highest amounts of total polyphenols content (1.32 and 1.28 mg gallic acid equivalent (GAE) per gram of sample), total tannin contents (3.34 mg catechin equivalent (CE) per gram of sample), and free radical scavenging capacity (106.67 mg ascorbic acid equivalent (AAE) per g of sample). In contrast, ripe Plantain peel had the greatest total flavonoids (0.03 mg quercetin equivalent (QE) per g of sample). On the other hand, unripe Ladyfinger pulp possessed the highest total antioxidant activity (1.03 mg AAE/g of sample). There was a positive correlation between flavonoids and antioxidant activities. By using LC-ESI-QTOF-MS/MS, a total of 24 phenolic compounds were tentatively characterized in this research, including six phenolic acids, 13 flavonoids, and five other polyphenols. Quantification of phenolic compounds by the high-performance liquid chromatography coupled with photodiode array detector (HPLC-PDA) revealed a higher content of phenolic acids. These findings confirmed that banana peel and pulp have considerable antioxidant activity and can be employed in human food and animal feed for variant health enhancement uses

    The Impact of Wet Fermentation on Coffee Quality Traits and Volatile Compounds Using Digital Technologies

    Get PDF
    Fermentation is critical for developing coffee’s physicochemical properties. This study aimed to assess the differences in quality traits between fermented and unfermented coffee with four grinding sizes of coffee powder using multiple digital technologies. A total of N = 2 coffee treatments—(i) dry processing and (ii) wet fermentation—with grinding levels (250, 350, 550, and 750 µm) were analysed using near-infrared spectrometry (NIR), electronic nose (e-nose), and headspace/gas chromatography–mass spectrometry (HS-SPME-GC-MS) coupled with machine learning (ML) modelling. Most overtones detected by NIR were within the ranges of 1700–2000 nm and 2200–2396 nm, while the enhanced peak responses of fermented coffee were lower. The overall voltage of nine e-nose sensors obtained from fermented coffee (250 µm) was significantly higher. There were two ML classification models to classify processing and brewing methods using NIR (Model 1) and e-nose (Model 2) values as inputs that were highly accurate (93.9% and 91.2%, respectively). Highly precise ML regression Model 3 and Model 4 based on the same inputs for NIR (R = 0.96) and e-nose (R = 0.99) were developed, respectively, to assess 14 volatile aromatic compounds obtained by GC-MS. Fermented coffee showed higher 2-methylpyrazine (2.20 ng/mL) and furfuryl acetate (2.36 ng/mL) content, which induces a stronger fruity aroma. This proposed rapid, reliable, and low-cost method was shown to be effective in distinguishing coffee postharvest processing methods and evaluating their volatile compounds, which has the potential to be applied for coffee differentiation and quality assurance and control

    LC-MS/MS-QTOF Screening and Identification of Phenolic Compounds from Australian Grown Herbs and Their Antioxidant Potential

    Get PDF
    Culinary spices and herbs have been used to impart a characteristic flavour and aroma in food due to their appealing fragrance. Recently, bioactive compounds from herbs, especially phenolics, have gained much attention due to their potential health outcomes. The aim of this study was to characterize and quantify the phenolic compounds from 10 widely used Australian-grown herbs (oregano, rosemary, bay, basil, sage, fenugreek, dill, parsley, mint and thyme). For this purpose, liquid chromatography mass spectrometry (LC-MS) was used for the complete profiling of polyphenolic compounds and quantification of abundant phenolic compounds was completed with high-performance liquid chromatography—photodiode array detection (HPLC-PDA). Polyphenols from Australian-grown herbs were estimated through total phenolic content (TP), total flavonoids (TF) and total tannins (TT) along with their in-vitro antioxidant activities. Oregano and mint were estimated with the highest value of TP (140.59 ± 9.52 and 103.28 ± 8.08 mg GAE/g, milligram gallic acid equivalent/gram) while rosemary and mint had the highest TF (8.19 ± 0.74 and 7.05 ± 0.43 mg QE (quercetin equivalent)/g). In this study, eighty-four (84) phenolic compounds were screened and confirmed through LC-MS/MS by comparing their masses and fragmentation pattern with published libraries. The results of this study validate the use of these herbs as bioactives and their positive impact on human health

    Comprehensive Profiling of Most Widely Used Spices for Their Phenolic Compounds through LC-ESI-QTOF-MS2 and Their Antioxidant Potential

    Get PDF
    Spices have long been used to improve food flavor, due to their appealing fragrance and sensory attributes. Nowadays, spices-based bioactives, particularly phenolic compounds, have gained attention due to their wide range of significant effects in biological systems. The present study was conducted to characterize the 12 widely used spices (allspice, black cardamom, black cumin, black pepper, cardamom, cinnamon, clove, cumin, fennel, nutmeg, star-anise, and turmeric) for their phenolics with the liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS2), polyphenols estimation, and their antioxidant potential. Total phenolics, total flavonoids, and total tannin content and their antioxidant activities were estimated in all spices. Clove and allspice had the highest value of total polyphenol content (215.14 and 40.49 mg gallic acid equivalent (GAE) per g of sample), while clove and turmeric had the highest total flavonoids (5.59 mg quercetin equivalent (QE) per g of sample) and total tannin contents (23.58 mg catechin equivalent (CE) per g of sample), respectively. On the other hand, black cumin and black pepper had the highest phosphomolybdate activity (15.61 and 15.43 mg ascorbic acid equivalent (AAE) per g of sample), while clove was almost identified with highest free radical scavenging capacity. A positive correlation was observed among phenolic compounds and antioxidant activities. In this quest, a total of 79 phenolic compounds were tentatively characterized by using LC-ESI-QTOF-MS2 including 26 phenolic acids, 33 flavonoids, 16 other polyphenols, and 4 lignans. The high-performance liquid chromatography coupled with photodiode array detector (HPLC-PDA) quantification of phenolic compounds exhibited higher phenolic acids. These results provided us some valuable information that spices have powerful antioxidant potential that can be further used in human food and animal feed as a supplement for different health promoting applications
    • …
    corecore